Wages: The Worst Transistor Aging Analysis for Large-scale Analog Integrated Circuits via Domain Generalization
2024-08-01
发表期刊ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS (IF:2.2[JCR-2023],1.7[5-Year])
ISSN1084-4309
EISSN1557-7309
卷号29期号:5
发表状态已发表
DOI10.1145/3659950
摘要Transistor aging leads to the deterioration of analog circuit performance over time. The worst aging degradation is used to evaluate the circuit reliability. It is extremely expensive to obtain it since several circuit stimuli need to be simulated. The worst degradation collection cost reduction brings an inaccurate training dataset when a machine learning (ML) model is used to fast perform the estimation. Motivated by the fact that there are many similar subcircuits in large-scale analog circuits, in this article we propose Wages to train an ML model on an inaccurate dataset for the worst aging degradation estimation via a domain generalization technique. A sampling-based method on the feature space of the transistor and its neighborhood subcircuit is developed to replace inaccurate labels. A consistent estimation for the worst degradation is enforced to update model parameters. Label updating and model updating are performed alternately to train an ML model on the inaccurate dataset. Experimental results on the very advanced 5nm technology node show that our Wages can significantly reduce the label collection cost with a negligible estimation error for the worst aging degradations compared to the traditional methods.
关键词Analog circuits aging reliability machine learning
URL查看原文
收录类别EI ; SCI
语种英语
资助项目National Key R&D Program of China[2023YFB4402900] ; Research Grants Council of Hong Kong SAR[CUHK14208021] ; National Natural Science Foundation of China[62304197] ; Shanghai Pujiang Program[22PJ1410400]
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:001332630700007
出版者ASSOC COMPUTING MACHINERY
EI入藏号20244217205459
EI主题词Electric network analysis
EI分类号703.1.1 Electric Network Analysis
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/436533
专题信息科学与技术学院
信息科学与技术学院_PI研究组_耿浩
通讯作者Chen, Tinghuan
作者单位
1.School of Science and Engineering, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China;
2.School of Information Science and Technology, ShanghaiTech University, Shanghai, China;
3.College of Integrated Circuits, Zhejiang University, Zhejiang, Hangzhou, China;
4.HiSilicon Technologies Co., Shenzhen, China;
5.HiSilicon Technologies Co., Chengdu, China;
6.Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
推荐引用方式
GB/T 7714
Chen, Tinghuan,Geng, Hao,Sun, Qi,et al. Wages: The Worst Transistor Aging Analysis for Large-scale Analog Integrated Circuits via Domain Generalization[J]. ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS,2024,29(5).
APA Chen, Tinghuan.,Geng, Hao.,Sun, Qi.,Wan, Sanping.,Sun, Yongsheng.,...&Yu, Bei.(2024).Wages: The Worst Transistor Aging Analysis for Large-scale Analog Integrated Circuits via Domain Generalization.ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS,29(5).
MLA Chen, Tinghuan,et al."Wages: The Worst Transistor Aging Analysis for Large-scale Analog Integrated Circuits via Domain Generalization".ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS 29.5(2024).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Tinghuan]的文章
[Geng, Hao]的文章
[Sun, Qi]的文章
百度学术
百度学术中相似的文章
[Chen, Tinghuan]的文章
[Geng, Hao]的文章
[Sun, Qi]的文章
必应学术
必应学术中相似的文章
[Chen, Tinghuan]的文章
[Geng, Hao]的文章
[Sun, Qi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3659950.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。