Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction
2024
发表期刊IEEE TRANSACTIONS ON MEDICAL IMAGING (IF:8.9[JCR-2023],11.3[5-Year])
ISSN1558-254X
EISSN1558-254X
卷号PP期号:99页码:1083-1097
发表状态已发表
DOI10.1109/TMI.2024.3473970
摘要

Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging. Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image, leading to considerable radiation exposure. This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses. While recent advances, including deep learning and neural rendering algorithms, have made strides in this area, these methods either produce unsatisfactory results or suffer from time inefficiency of individual optimization. In this paper, we introduce a novel geometry-aware encoder-decoder framework to solve this problem. Our framework starts by encoding multi-view 2D features from various 2D X-ray projections with a 2D CNN encoder. Leveraging the geometry of CBCT scanning, it then back-projects the multi-view 2D features into the 3D space to formulate a comprehensive volumetric feature map, followed by a 3D CNN decoder to recover 3D CBCT image. Importantly, our approach respects the geometric relationship between 3D CBCT image and its 2D X-ray projections during feature back projection stage, and enjoys the prior knowledge learned from the data population. This ensures its adaptability in dealing with extremely sparse view inputs without individual training, such as scenarios with only 5 or 10 X-ray projections. Extensive evaluations on two simulated datasets and one real-world dataset demonstrate exceptional reconstruction quality and time efficiency of our method.

关键词3D reconstruction Computerized tomography Deep neural networks Volume rendering Computed tomography images Cone-beam computed tomography Geometry awareness High quality Multi-view consistence Multi-views Prior-knowledge Sparse-view cone beam computed tomography reconstruction Tomography reconstruction X-ray projections
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20244117179829
EI主题词Medical imaging
EI分类号101.1 ; 1101 ; 1101.2.1 ; 1106.2 ; 1106.5 ; 1106.8 ; 746 Imaging Techniques
原始文献类型Article in Press
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/436507
专题信息科学与技术学院_博士生
信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_沈定刚组
生物医学工程学院_PI研究组_崔智铭组
作者单位
1.School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech Univerisity, Shanghai, China
2.School of Informatics, The University of Edinburgh, Edinburgh, UK
3.Department of Computer Science, The University of Hong Kong, Hong Kong, China
4.Shanghai United Imaging Intelligence Co., Ltd, Shanghai, China
5.Shanghai Clinical Research and Trial Center, Shanghai, China
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Zhentao Liu,Yu Fang,Changjian Li,et al. Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction[J]. IEEE TRANSACTIONS ON MEDICAL IMAGING,2024,PP(99):1083-1097.
APA Zhentao Liu.,Yu Fang.,Changjian Li.,Han Wu.,Yuan Liu.,...&Zhiming Cui.(2024).Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction.IEEE TRANSACTIONS ON MEDICAL IMAGING,PP(99),1083-1097.
MLA Zhentao Liu,et al."Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction".IEEE TRANSACTIONS ON MEDICAL IMAGING PP.99(2024):1083-1097.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhentao Liu]的文章
[Yu Fang]的文章
[Changjian Li]的文章
百度学术
百度学术中相似的文章
[Zhentao Liu]的文章
[Yu Fang]的文章
[Changjian Li]的文章
必应学术
必应学术中相似的文章
[Zhentao Liu]的文章
[Yu Fang]的文章
[Changjian Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。