ShanghaiTech University Knowledge Management System
Over-the-Air Federated Graph Learning | |
2024 | |
发表期刊 | IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year]) |
ISSN | 1558-2248 |
EISSN | 1558-2248 |
卷号 | PP期号:99 |
发表状态 | 已发表 |
DOI | 10.1109/TWC.2024.3471906 |
摘要 | Message-passing graph neural network (MPGNN) shows tremendous promise in modeling complex networks by capturing the interaction among vertices via the messaging-passing mechanism. However, the dimension of MPGNN is tied to the size of vertices in the graph, which varies from graph to graph, resulting in dimension mismatch that hinders the utilization of graph data distributed at the network edge. To address this issue, we in this paper leverage the attention mechanism to project the graph representation of MPGNNs into a unified space and apply over-the-air computation (AirComp) to support federated graph learning (FGL) over wireless networks. By explicitly deriving the upper bound on the convergence of over-the-air FGL, we formulate a long-term transmission distortion minimization problem, which is further decomposed into a series of online optimization problems by using Lyapunov optimization. We further propose a deep reinforcement learning based algorithm to optimize the AirComp transceiver, where the analytical expression of transmit power is exploited in the action design to reduce the searching space and also enhance the training performance. Simulations demonstrate that, compared to the benchmarks, the proposed algorithm attains two orders of magnitude acceleration in the inference stage, while exhibiting enhanced robustness and improving learning performance. |
关键词 | Graph neural networks Reinforcement learning Data distributed Federated graph learning Graph data Graph neural networks Message-passing Messaging passing Model complexes Over the airs Over-the-air computation Reinforcement learnings |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20244317253530 |
EI主题词 | Deep reinforcement learning |
EI分类号 | 1101 ; 1101.2 ; 1101.2.1 |
原始文献类型 | Article in Press |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/433545 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Department of ECE, Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zixin Wang,Yong Zhou,Yuanming Shi. Over-the-Air Federated Graph Learning[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2024,PP(99). |
APA | Zixin Wang,Yong Zhou,&Yuanming Shi.(2024).Over-the-Air Federated Graph Learning.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,PP(99). |
MLA | Zixin Wang,et al."Over-the-Air Federated Graph Learning".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS PP.99(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。