Over-the-Air Federated Graph Learning
2024
发表期刊IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year])
ISSN1558-2248
EISSN1558-2248
卷号PP期号:99
发表状态已发表
DOI10.1109/TWC.2024.3471906
摘要

Message-passing graph neural network (MPGNN) shows tremendous promise in modeling complex networks by capturing the interaction among vertices via the messaging-passing mechanism. However, the dimension of MPGNN is tied to the size of vertices in the graph, which varies from graph to graph, resulting in dimension mismatch that hinders the utilization of graph data distributed at the network edge. To address this issue, we in this paper leverage the attention mechanism to project the graph representation of MPGNNs into a unified space and apply over-the-air computation (AirComp) to support federated graph learning (FGL) over wireless networks. By explicitly deriving the upper bound on the convergence of over-the-air FGL, we formulate a long-term transmission distortion minimization problem, which is further decomposed into a series of online optimization problems by using Lyapunov optimization. We further propose a deep reinforcement learning based algorithm to optimize the AirComp transceiver, where the analytical expression of transmit power is exploited in the action design to reduce the searching space and also enhance the training performance. Simulations demonstrate that, compared to the benchmarks, the proposed algorithm attains two orders of magnitude acceleration in the inference stage, while exhibiting enhanced robustness and improving learning performance.

关键词Graph neural networks Reinforcement learning Data distributed Federated graph learning Graph data Graph neural networks Message-passing Messaging passing Model complexes Over the airs Over-the-air computation Reinforcement learnings
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20244317253530
EI主题词Deep reinforcement learning
EI分类号1101 ; 1101.2 ; 1101.2.1
原始文献类型Article in Press
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/433545
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Department of ECE, Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zixin Wang,Yong Zhou,Yuanming Shi. Over-the-Air Federated Graph Learning[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2024,PP(99).
APA Zixin Wang,Yong Zhou,&Yuanming Shi.(2024).Over-the-Air Federated Graph Learning.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,PP(99).
MLA Zixin Wang,et al."Over-the-Air Federated Graph Learning".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS PP.99(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zixin Wang]的文章
[Yong Zhou]的文章
[Yuanming Shi]的文章
百度学术
百度学术中相似的文章
[Zixin Wang]的文章
[Yong Zhou]的文章
[Yuanming Shi]的文章
必应学术
必应学术中相似的文章
[Zixin Wang]的文章
[Yong Zhou]的文章
[Yuanming Shi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。