Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation
2024-09-25
状态已发表
摘要

Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology. However, due to the accessibility of MRI scanners and their lengthy acquisition time, multimodal MR images are not commonly available. Current MR image synthesis approaches are typically trained on independent datasets for specific tasks, leading to suboptimal performance when applied to novel datasets and tasks. Here, we present TUMSyn, a Text-guided Universal MR image Synthesis generalist model, which can flexibly generate brain MR images with demanded imaging metadata from routinely acquired scans guided by text prompts. To ensure TUMSyn's image synthesis precision, versatility, and generalizability, we first construct a brain MR database comprising 31,407 3D images with 7 MRI modalities from 13 centers. We then pre-train an MRI-specific text encoder using contrastive learning to effectively control MR image synthesis based on text prompts. Extensive experiments on diverse datasets and physician assessments indicate that TUMSyn can generate clinically meaningful MR images with specified imaging metadata in supervised and zero-shot scenarios. Therefore, TUMSyn can be utilized along with acquired MR scan(s) to facilitate large-scale MRI-based screening and diagnosis of brain diseases.

DOIarXiv:2409.16818
相关网址查看原文
出处Arxiv
WOS记录号PPRN:98871715
WOS类目Computer Science, Software Engineering ; Engineering, Electrical& Electronic
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/433539
专题生物医学工程学院
信息科学与技术学院_博士生
生物医学工程学院_PI研究组_沈定刚组
生物医学工程学院_PI研究组_王乾组
上海临床研究中心
生物医学工程学院_PI研究组_孙开聪组
通讯作者Wang, Qian; Liu, Qian; Shen, Dinggang
作者单位
1.Hainan Univ, Sch Biomed Engn, Haikou 570228, Peoples R China
2.Hainan Univ, State Key Lab Digital Med Engn, Haikou 570228, Peoples R China
3.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
4.ShanghaiTech Univ, State Key Lab Adv Med Mat & Devices, Shanghai 201210, Peoples R China
5.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China
6.Shanghai United Imaging Intelligence Co Ltd, Shanghai 200230, Peoples R China
7.Hainan Univ, One Hlth Inst, Key Lab Biomed Engn Hainan Prov, Haikou 570228, Peoples R China
8.Xihu Univ, Affiliated Hangzhou Peoples Hosp 1, Dept Radiol, Sch Med, Hangzhou 310030, Peoples R China
推荐引用方式
GB/T 7714
Wang, Yulin,Xiong, Honglin,Sun, Kaicong,et al. Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Yulin]的文章
[Xiong, Honglin]的文章
[Sun, Kaicong]的文章
百度学术
百度学术中相似的文章
[Wang, Yulin]的文章
[Xiong, Honglin]的文章
[Sun, Kaicong]的文章
必应学术
必应学术中相似的文章
[Wang, Yulin]的文章
[Xiong, Honglin]的文章
[Sun, Kaicong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。