Moner: Motion Correction in Undersampled Radial MRI with Unsupervised Neural Representation
2024-09-25
状态已发表
摘要Motion correction (MoCo) in radial MRI is a challenging problem due to the unpredictability of subject's motion. Current state-of-the-art (SOTA) MoCo algorithms often use extensive high-quality MR images to pre-train neural networks, obtaining excellent reconstructions. However, the need for large-scale datasets significantly increases costs and limits model generalization. In this work, we propose Moner, an unsupervised MoCo method that jointly solves artifact-free MR images and accurate motion from undersampled, rigid motion-corrupted k-space data, without requiring training data. Our core idea is to leverage the continuous prior of implicit neural representation (INR) to constrain this ill-posed inverse problem, enabling ideal solutions. Specifically, we incorporate a quasi-static motion model into the INR, granting its ability to correct subject's motion. To stabilize model optimization, we reformulate radial MRI as a back-projection problem using the Fourier-slice theorem. Additionally, we propose a novel coarse-to-fine hash encoding strategy, significantly enhancing MoCo accuracy. Experiments on multiple MRI datasets show our Moner achieves performance comparable to SOTA MoCo techniques on in-domain data, while demonstrating significant improvements on out-of-domain data.
语种英语
DOIarXiv:2409.16921
相关网址查看原文
出处Arxiv
收录类别PPRN.PPRN
WOS记录号PPRN:98871711
WOS类目Computer Science, Software Engineering ; Engineering, Electrical& Electronic
资助项目National Key R&D Program of China[2024YFC2421100] ; National Natural Science Foundation of China["62471296","62071299"]
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/433537
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_PI研究组_张玉瑶组
通讯作者Wei, Hongjiang
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Shanghai Jiao Tong Univ, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Wu, Qing,Du, Chenhe,Tian, Xuanyu,et al. Moner: Motion Correction in Undersampled Radial MRI with Unsupervised Neural Representation. 2024.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wu, Qing]的文章
[Du, Chenhe]的文章
[Tian, Xuanyu]的文章
百度学术
百度学术中相似的文章
[Wu, Qing]的文章
[Du, Chenhe]的文章
[Tian, Xuanyu]的文章
必应学术
必应学术中相似的文章
[Wu, Qing]的文章
[Du, Chenhe]的文章
[Tian, Xuanyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。