Benchmarking copy number aberrations inference tools using single-cell multi-omics datasets
2025-03-04
状态已发表
摘要

Copy number alterations (CNAs) are an important type of genomic variation which play a crucial role in the initiation and progression of cancer. With the explosion of single-cell RNA sequencing (scRNA-seq), several computational methods have been developed to infer CNAs from scRNA-seq studies. However, to date, no independent studies have comprehensively benchmarked their performance. Herein, we evaluated five state-of-the-art methods based on their performance in tumor versus normal cell classification; CNAs profile accuracy, tumor subclone inference, and aneuploidy identification in non-malignant cells. Our results showed that Numbat outperformed others across most evaluation criteria, while CopyKAT excelled in scenarios when expression matrix alone was used as input. In specific tasks, SCEVAN showed the best performance in clonal breakpoint detection and Numbat showed high sensitivity in copy number neutral LOH (cnLOH) detection. Additionally, we investigated how referencing settings, inclusion of tumor microenvironment cells, tumor type, and tumor purity impact the performance of these tools. This study provides a valuable guideline for researchers in selecting the appropriate methods for their datasets.

关键词single-cell RNA sequencing copy number aberrations copy number alteration copy number variations loss of heterozygosity single cell multi-omics
语种英语
DOI10.1093/bib/bbaf076
相关网址查看原文
出处BRIEFINGS IN BIOINFORMATICS
收录类别SCI ; PPRN.PPRN
WOS记录号WOS:001436628100001
WOS类目Biochemical Research Methods ; Mathematical & Computational Biology
WOS研究方向Biochemistry & Molecular Biology ; Mathematical & Computational Biology
资助项目Zhejiang lab Development of Novel Functional Proteins Based on Databases and Artificial Intelligence[117005-AC2106/002] ; National Natural Science Foundation of China[31871332]
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/433533
专题生命科学与技术学院
生命科学与技术学院_PI研究组_张力烨组
生命科学与技术学院_PI研究组_黄行许组
免疫化学研究所
生命科学与技术学院_硕士生
生命科学与技术学院_博士生
通讯作者Zhang, Liye
作者单位
1.Zhejiang Lab, Res Ctr Life Sci Comp, Hangzhou 311121, Peoples R China
2.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
3.Shanghai Clin Res & Trial Ctr, Keyuan Rd, Shanghai, Peoples R China
4.Yazhouwan Natl Lab, Sanya 572025, Hainan, Peoples R China
推荐引用方式
GB/T 7714
Song, Minfang,Ma, Shuai,Wang, Gong,et al. Benchmarking copy number aberrations inference tools using single-cell multi-omics datasets. 2025.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Song, Minfang]的文章
[Ma, Shuai]的文章
[Wang, Gong]的文章
百度学术
百度学术中相似的文章
[Song, Minfang]的文章
[Ma, Shuai]的文章
[Wang, Gong]的文章
必应学术
必应学术中相似的文章
[Song, Minfang]的文章
[Ma, Shuai]的文章
[Wang, Gong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。