ShanghaiTech University Knowledge Management System
Benchmarking copy number aberrations inference tools using single-cell multi-omics datasets | |
2025-03-04 | |
状态 | 已发表 |
摘要 | Copy number alterations (CNAs) are an important type of genomic variation which play a crucial role in the initiation and progression of cancer. With the explosion of single-cell RNA sequencing (scRNA-seq), several computational methods have been developed to infer CNAs from scRNA-seq studies. However, to date, no independent studies have comprehensively benchmarked their performance. Herein, we evaluated five state-of-the-art methods based on their performance in tumor versus normal cell classification; CNAs profile accuracy, tumor subclone inference, and aneuploidy identification in non-malignant cells. Our results showed that Numbat outperformed others across most evaluation criteria, while CopyKAT excelled in scenarios when expression matrix alone was used as input. In specific tasks, SCEVAN showed the best performance in clonal breakpoint detection and Numbat showed high sensitivity in copy number neutral LOH (cnLOH) detection. Additionally, we investigated how referencing settings, inclusion of tumor microenvironment cells, tumor type, and tumor purity impact the performance of these tools. This study provides a valuable guideline for researchers in selecting the appropriate methods for their datasets. |
关键词 | single-cell RNA sequencing copy number aberrations copy number alteration copy number variations loss of heterozygosity single cell multi-omics |
语种 | 英语 |
DOI | 10.1093/bib/bbaf076 |
相关网址 | 查看原文 |
出处 | BRIEFINGS IN BIOINFORMATICS |
收录类别 | SCI ; PPRN.PPRN |
WOS记录号 | WOS:001436628100001 |
WOS类目 | Biochemical Research Methods ; Mathematical & Computational Biology |
WOS研究方向 | Biochemistry & Molecular Biology ; Mathematical & Computational Biology |
资助项目 | Zhejiang lab Development of Novel Functional Proteins Based on Databases and Artificial Intelligence[117005-AC2106/002] ; National Natural Science Foundation of China[31871332] |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/433533 |
专题 | 生命科学与技术学院 生命科学与技术学院_PI研究组_张力烨组 生命科学与技术学院_PI研究组_黄行许组 免疫化学研究所 生命科学与技术学院_硕士生 生命科学与技术学院_博士生 |
通讯作者 | Zhang, Liye |
作者单位 | 1.Zhejiang Lab, Res Ctr Life Sci Comp, Hangzhou 311121, Peoples R China 2.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China 3.Shanghai Clin Res & Trial Ctr, Keyuan Rd, Shanghai, Peoples R China 4.Yazhouwan Natl Lab, Sanya 572025, Hainan, Peoples R China |
推荐引用方式 GB/T 7714 | Song, Minfang,Ma, Shuai,Wang, Gong,et al. Benchmarking copy number aberrations inference tools using single-cell multi-omics datasets. 2025. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。