ShanghaiTech University Knowledge Management System
A Mixing-Accelerated Primal-Dual Proximal Algorithm for Distributed Nonconvex Optimization | |
2024 | |
会议录名称 | PROCEEDINGS OF THE AMERICAN CONTROL CONFERENCE |
ISSN | 0743-1619 |
页码 | 167-172 |
发表状态 | 已发表 |
DOI | 10.23919/ACC60939.2024.10644289 |
摘要 | In this paper, we develop a distributed mixing-accelerated primal-dual proximal algorithm, referred to as MAP-Pro, which enables nodes in multi-agent networks to cooperatively minimize the sum of their nonconvex, smooth local cost functions in a decentralized fashion. The proposed algorithm is constructed upon minimizing a computationally inexpensive augmented-Lagrangian-like function and incorporating a time-varying mixing polynomial to expedite information fusion across the network. The convergence results derived for MAP-Pro include a sublinear rate of convergence to a stationary solution and, under the Polyak-Lojasiewics (P-L) condition, a linear rate of convergence to the global optimal solution. Additionally, we may embed the well-noted Chebyshev acceleration scheme in MAP-Pro, which generates a specific sequence of mixing polynomials with given degrees and enhances the convergence performance based on MAP-Pro. Finally, we illustrate the competitive convergence speed and communication efficiency of MAP-Pro via a numerical example. © 2024 AACC. |
会议录编者/会议主办者 | Boeing ; Elsevier ; et al. ; Halliburton ; MathWorks ; Mitsubishi Electric Research Laboratories (MERL) |
关键词 | Chebyshev polynomials Clutter (information theory) Data fusion Information fusion Lagrange multipliers Optimal systems Polynomials Augmented Lagrangians Cost-function Decentralised Distributed mixing Multiagent networks Nonconvex Nonconvex optimization Nonconvex-optimization Primal-dual Proximal algorithm |
会议名称 | 2024 American Control Conference, ACC 2024 |
会议地点 | Toronto, ON, Canada |
会议日期 | July 10, 2024 - July 12, 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20243917086375 |
EI主题词 | Cost functions |
EI分类号 | 1106.2 ; 1201.1 ; 1201.2 ; 1201.7 ; 1201.9 ; 716.1 Information Theory and Signal Processing ; 903.1 Information Sources and Analysis ; 961 Systems Science |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/430537 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_陆疌组 信息科学与技术学院_博士生 |
作者单位 | 1.University of Virginia, Charles L. Brown Department of Electrical and Computer Engineering, Charlottesville; VA; 22904-4743, United States 2.School of Information Science and Technology, Shanghaitech University, Shanghai; 2012, China 3.Shanghai Engineering Research Center of Energy Efficient and Custon Ai Ic, Shanghai; 201210, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zichong, O.,Qiu, Chenyang,Wang, Dandan,et al. A Mixing-Accelerated Primal-Dual Proximal Algorithm for Distributed Nonconvex Optimization[C]//Boeing, Elsevier, et al., Halliburton, MathWorks, Mitsubishi Electric Research Laboratories (MERL):Institute of Electrical and Electronics Engineers Inc.,2024:167-172. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。