ShanghaiTech University Knowledge Management System
A Learning-based Method for Predicting Initial Velocity Field for Unsteady Flow Simulation | |
2025 | |
发表期刊 | COMPUTER GRAPHICS FORUM (IF:2.7[JCR-2023],2.9[5-Year]) |
ISSN | 0167-7055 |
发表状态 | 待投递 |
摘要 | Transient fluid simulation is of crucial importance for both visual effects and engineering design. Achieving the steady state of transient fluid provides valuable physical insights and information about the simulated scenario, which is desirable in many applications. However, initializing the fluid flow solver to quickly reach a dynamic statistical equilibrium state for further simulation and processing is challenging. Typically, initializing a flow field based on domain geometry is computationally expensive, leading practitioners to use simple initializations like a constant velocity field, which hampers efficient solver convergence. In this paper, we propose the first machine learning approach for efficient initial fluid field prediction that could be used to accelerate any fluid flow solver. Our method features a novel neural network model that integrates dense local and sparse global information using a U-shaped convolutional neural network with attention blocks. This architecture enhances predictability even with simple fluid domain geometries. We evaluate our learning-based initialization approach across various cases, including geometries not present in the training set, demonstrating superior convergence to the desired state. This capability is beneficial for both smoke generation in special effects and drag evaluation in engineering applications. Our results show up to 4-fold speedup compared to the widely-used constant velocity field initialization. Additionally, our method is effective for predicting both mean and turbulent field initializations, leading to wider potential future applications. Various smoke animation results and a drag evaluation example are presented to illustrate the practical applicability of our approach. |
关键词 | fluid simulation geometry-based vector field prediction machine learning attention mechanism |
学科门类 | 工学 ; 工学::计算机科学与技术(可授工学、理学学位) |
收录类别 | SCI ; EI |
语种 | 英语 |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/430469 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_刘晓培组 信息科学与技术学院_硕士生 |
通讯作者 | Liu, Xiaopei |
作者单位 | School of Information Science and Technology, ShanghaiTech University |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yan, Jiazi,Bai, Kai,Fu, Xinyi,et al. A Learning-based Method for Predicting Initial Velocity Field for Unsteady Flow Simulation[J]. COMPUTER GRAPHICS FORUM,2025. |
APA | Yan, Jiazi,Bai, Kai,Fu, Xinyi,Zhou, Xuanchen,&Liu, Xiaopei.(2025).A Learning-based Method for Predicting Initial Velocity Field for Unsteady Flow Simulation.COMPUTER GRAPHICS FORUM. |
MLA | Yan, Jiazi,et al."A Learning-based Method for Predicting Initial Velocity Field for Unsteady Flow Simulation".COMPUTER GRAPHICS FORUM (2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yan, Jiazi]的文章 |
[Bai, Kai]的文章 |
[Fu, Xinyi]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yan, Jiazi]的文章 |
[Bai, Kai]的文章 |
[Fu, Xinyi]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yan, Jiazi]的文章 |
[Bai, Kai]的文章 |
[Fu, Xinyi]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。