消息
×
loading..
Fourier Convolution Block with global receptive field for MRI reconstruction
2025
发表期刊MEDICAL IMAGE ANALYSIS (IF:10.7[JCR-2023],11.9[5-Year])
ISSN1361-8415
EISSN1361-8423
卷号99
发表状态已发表
DOI10.1016/j.media.2024.103349
摘要

Reconstructing images from under-sampled Magnetic Resonance Imaging (MRI) signals significantly reduces scan time and improves clinical practice. However, Convolutional Neural Network (CNN)-based methods, while demonstrating great performance in MRI reconstruction, may face limitations due to their restricted receptive field (RF), hindering the capture of global features. This is particularly crucial for reconstruction, as aliasing artifacts are distributed globally. Recent advancements in Vision Transformers have further emphasized the significance of a large RF. In this study, we proposed a novel global Fourier Convolution Block (FCB) with whole image RF and low computational complexity by transforming the regular spatial domain convolutions into frequency domain. Visualizations of the effective RF and trained kernels demonstrated that FCB improves the RF of reconstruction models in practice. The proposed FCB was evaluated on four popular CNN architectures using brain and knee MRI datasets. Models with FCB achieved superior PSNR and SSIM than baseline models and exhibited more details and texture recovery. The code is publicly available at https://github.com/Haozhoong/FCB.

关键词Deep learning Fourier convolution MRI reconstruction Receptive field
URL查看原文
收录类别SCI ; EI
语种英语
资助项目Science and Technology Planning Program of Beijing Municipal Science and Technology Commission and Administrative Commission of Zhongguancun Science Park[Z231100004823012] ; Key Program of the National Natural Science Foundation of China[81930119] ; Beijing Municipal Natural Science Foundation[Z190024] ; Tsinghua University Initiative Scientific Research Program of Precision Medicine[10001020108]
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001320765700001
出版者ELSEVIER
EI入藏号20243917082994
EI主题词Convolutional neural networks
EI分类号1101.2.1 ; 1106.3.1
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/430432
专题生物医学工程学院
生物医学工程学院_PI研究组_齐海坤组
通讯作者Chen, Huijun
作者单位
1.Tsinghua Univ, Dept Biomed Engn, Beijing, Peoples R China
2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Sun, Haozhong,Li, Yuze,Li, Zhongsen,et al. Fourier Convolution Block with global receptive field for MRI reconstruction[J]. MEDICAL IMAGE ANALYSIS,2025,99.
APA Sun, Haozhong.,Li, Yuze.,Li, Zhongsen.,Yang, Runyu.,Xu, Ziming.,...&Chen, Huijun.(2025).Fourier Convolution Block with global receptive field for MRI reconstruction.MEDICAL IMAGE ANALYSIS,99.
MLA Sun, Haozhong,et al."Fourier Convolution Block with global receptive field for MRI reconstruction".MEDICAL IMAGE ANALYSIS 99(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Sun, Haozhong]的文章
[Li, Yuze]的文章
[Li, Zhongsen]的文章
百度学术
百度学术中相似的文章
[Sun, Haozhong]的文章
[Li, Yuze]的文章
[Li, Zhongsen]的文章
必应学术
必应学术中相似的文章
[Sun, Haozhong]的文章
[Li, Yuze]的文章
[Li, Zhongsen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。