消息
×
loading..
SLInterpreter: An Exploratory and Iterative Human-AI Collaborative System for GNN-based Synthetic Lethal Prediction
2024
发表期刊IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (IF:4.7[JCR-2023],5.1[5-Year])
ISSN2160-9306
EISSN1941-0506
卷号PP期号:99页码:919-929
发表状态已发表
DOI10.1109/TVCG.2024.3456325
摘要Synthetic Lethal (SL) relationships, though rare among the vast array of gene combinations, hold substantial promise for targeted cancer therapy. Despite advancements in AI model accuracy, there is still a significant need among domain experts for interpretive paths and mechanism explorations that align better with domain-specific knowledge, particularly due to the high costs of experimentation. To address this gap, we propose an iterative Human-AI collaborative framework with two key components: 1) HumanEngaged Knowledge Graph Refinement based on Metapath Strategies, which leverages insights from interpretive paths and domain expertise to refine the knowledge graph through metapath strategies with appropriate granularity. 2) Cross-Granularity SL Interpretation Enhancement and Mechanism Analysis, which aids experts in organizing and comparing predictions and interpretive paths across different granularities, uncovering new SL relationships, enhancing result interpretation, and elucidating potential mechanisms inferred by Graph Neural Network (GNN) models. These components cyclically optimize model predictions and mechanism explorations, enhancing expert involvement and intervention to build trust. Facilitated by SLInterpreter, this framework ensures that newly generated interpretive paths increasingly align with domain knowledge and adhere more closely to real-world biological principles through iterative Human-AI collaboration. We evaluate the framework's efficacy through a case study and expert interviews
关键词Economic and social effects Collaborative systems Graph neural networks Interpretability Iterative human-AI collaboration Knowledge graphs Model interpretability Network-based Synthetic lethal Synthetic lethality Visual analytics
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20244017128542
EI主题词Graph neural networks
EI分类号1101 ; 971 Social Sciences
原始文献类型Article in Press
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/427480
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_郑杰组
信息科学与技术学院_PI研究组_李权组
作者单位
School of Information Science and Technology, and Shanghai Engineering Research Center of Intelligent Vision and Imaging, ShanghaiTech University, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Haoran Jiang,Shaohan Shi,Shuhao Zhang,et al. SLInterpreter: An Exploratory and Iterative Human-AI Collaborative System for GNN-based Synthetic Lethal Prediction[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2024,PP(99):919-929.
APA Haoran Jiang,Shaohan Shi,Shuhao Zhang,Jie Zheng,&Quan Li.(2024).SLInterpreter: An Exploratory and Iterative Human-AI Collaborative System for GNN-based Synthetic Lethal Prediction.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,PP(99),919-929.
MLA Haoran Jiang,et al."SLInterpreter: An Exploratory and Iterative Human-AI Collaborative System for GNN-based Synthetic Lethal Prediction".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS PP.99(2024):919-929.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Haoran Jiang]的文章
[Shaohan Shi]的文章
[Shuhao Zhang]的文章
百度学术
百度学术中相似的文章
[Haoran Jiang]的文章
[Shaohan Shi]的文章
[Shuhao Zhang]的文章
必应学术
必应学术中相似的文章
[Haoran Jiang]的文章
[Shaohan Shi]的文章
[Shuhao Zhang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TVCG.2024.3456325.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。