| |||||||
ShanghaiTech University Knowledge Management System
SLInterpreter: An Exploratory and Iterative Human-AI Collaborative System for GNN-based Synthetic Lethal Prediction | |
2024 | |
发表期刊 | IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (IF:4.7[JCR-2023],5.1[5-Year]) |
ISSN | 2160-9306 |
EISSN | 1941-0506 |
卷号 | PP期号:99页码:919-929 |
发表状态 | 已发表 |
DOI | 10.1109/TVCG.2024.3456325 |
摘要 | Synthetic Lethal (SL) relationships, though rare among the vast array of gene combinations, hold substantial promise for targeted cancer therapy. Despite advancements in AI model accuracy, there is still a significant need among domain experts for interpretive paths and mechanism explorations that align better with domain-specific knowledge, particularly due to the high costs of experimentation. To address this gap, we propose an iterative Human-AI collaborative framework with two key components: 1) HumanEngaged Knowledge Graph Refinement based on Metapath Strategies, which leverages insights from interpretive paths and domain expertise to refine the knowledge graph through metapath strategies with appropriate granularity. 2) Cross-Granularity SL Interpretation Enhancement and Mechanism Analysis, which aids experts in organizing and comparing predictions and interpretive paths across different granularities, uncovering new SL relationships, enhancing result interpretation, and elucidating potential mechanisms inferred by Graph Neural Network (GNN) models. These components cyclically optimize model predictions and mechanism explorations, enhancing expert involvement and intervention to build trust. Facilitated by SLInterpreter, this framework ensures that newly generated interpretive paths increasingly align with domain knowledge and adhere more closely to real-world biological principles through iterative Human-AI collaboration. We evaluate the framework's efficacy through a case study and expert interviews |
关键词 | Economic and social effects Collaborative systems Graph neural networks Interpretability Iterative human-AI collaboration Knowledge graphs Model interpretability Network-based Synthetic lethal Synthetic lethality Visual analytics |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20244017128542 |
EI主题词 | Graph neural networks |
EI分类号 | 1101 ; 971 Social Sciences |
原始文献类型 | Article in Press |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/427480 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_郑杰组 信息科学与技术学院_PI研究组_李权组 |
作者单位 | School of Information Science and Technology, and Shanghai Engineering Research Center of Intelligent Vision and Imaging, ShanghaiTech University, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Haoran Jiang,Shaohan Shi,Shuhao Zhang,et al. SLInterpreter: An Exploratory and Iterative Human-AI Collaborative System for GNN-based Synthetic Lethal Prediction[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2024,PP(99):919-929. |
APA | Haoran Jiang,Shaohan Shi,Shuhao Zhang,Jie Zheng,&Quan Li.(2024).SLInterpreter: An Exploratory and Iterative Human-AI Collaborative System for GNN-based Synthetic Lethal Prediction.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,PP(99),919-929. |
MLA | Haoran Jiang,et al."SLInterpreter: An Exploratory and Iterative Human-AI Collaborative System for GNN-based Synthetic Lethal Prediction".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS PP.99(2024):919-929. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。