Data-driven risk stratification and precision management of pulmonary nodules detected on chest computed tomography
2024-09-01
发表期刊NATURE MEDICINE
ISSN1078-8956
EISSN1546-170X
发表状态已发表
DOI10.1038/s41591-024-03211-3
摘要

The widespread implementation of low-dose computed tomography (LDCT) in lung cancer screening has led to the increasing detection of pulmonary nodules. However, precisely evaluating the malignancy risk of pulmonary nodules remains a formidable challenge. Here we propose a triage-driven Chinese Lung Nodules Reporting and Data System (C-Lung-RADS) utilizing a medical checkup cohort of 45,064 cases. The system was operated in a stepwise fashion, initially distinguishing low-, mid-, high- and extremely high-risk nodules based on their size and density. Subsequently, it progressively integrated imaging information, demographic characteristics and follow-up data to pinpoint suspicious malignant nodules and refine the risk scale. The multidimensional system achieved a state-of-the-art performance with an area under the curve (AUC) of 0.918 (95% confidence interval (CI) 0.918-0.919) on the internal testing dataset, outperforming the single-dimensional approach (AUC of 0.881, 95% CI 0.880-0.882). Moreover, C-Lung-RADS exhibited a superior sensitivity compared with Lung-RADS v2022 (87.1% versus 63.3%) in an independent cohort, which was screened using mobile computed tomography scanners to broaden screening accessibility in resource-constrained settings. With its foundation in precise risk stratification and tailored management, this system has minimized unnecessary invasive procedures for low-risk cases and recommended prompt intervention for extremely high-risk nodules to avert diagnostic delays. This approach has the potential to enhance the decision-making paradigm and facilitate a more efficient diagnosis of lung cancer during routine checkups as well as screening scenarios.

URL查看原文
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[
WOS研究方向Biochemistry & Molecular Biology ; Cell Biology ; Research & Experimental Medicine
WOS类目Biochemistry & Molecular Biology ; Cell Biology ; Medicine, Research & Experimental
WOS记录号WOS:001314921600001
出版者NATURE PORTFOLIO
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/427461
专题生物医学工程学院
科技发展处
生物医学工程学院_PI研究组_沈定刚组
通讯作者Wang, Chengdi; Shi, Feng; Shen, Dinggang; Li, Weimin
作者单位
1.Sichuan Univ, West China Hosp, Frontiers Sci Ctr Dis, West China Sch Med,Dept Pulm & Crit Care Med,Targe, Chengdu, Peoples R China
2.Frontiers Med Ctr, Tianfu Jincheng Lab, Chengdu, Peoples R China
3.United Imaging Intelligence, Dept Res & Dev, Shanghai, Peoples R China
4.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
5.ShanghaiTech Univ, State Key Lab Adv Med Mat & Devices, Shanghai, Peoples R China
6.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China
通讯作者单位生物医学工程学院;  上海科技大学
推荐引用方式
GB/T 7714
Wang, Chengdi,Shao, Jun,He, Yichu,et al. Data-driven risk stratification and precision management of pulmonary nodules detected on chest computed tomography[J]. NATURE MEDICINE,2024.
APA Wang, Chengdi.,Shao, Jun.,He, Yichu.,Wu, Jiaojiao.,Liu, Xingting.,...&Li, Weimin.(2024).Data-driven risk stratification and precision management of pulmonary nodules detected on chest computed tomography.NATURE MEDICINE.
MLA Wang, Chengdi,et al."Data-driven risk stratification and precision management of pulmonary nodules detected on chest computed tomography".NATURE MEDICINE (2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Chengdi]的文章
[Shao, Jun]的文章
[He, Yichu]的文章
百度学术
百度学术中相似的文章
[Wang, Chengdi]的文章
[Shao, Jun]的文章
[He, Yichu]的文章
必应学术
必应学术中相似的文章
[Wang, Chengdi]的文章
[Shao, Jun]的文章
[He, Yichu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。