ShanghaiTech University Knowledge Management System
Development of Machine Learning Based Classification Method for Carotid Plaques Using Portable 3D Ultrasound | |
2024-09-26 | |
会议录名称 | 2024 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS)
![]() |
ISSN | 1099-4734 |
发表状态 | 已发表 |
DOI | 10.1109/UFFC-JS60046.2024.10793889 |
摘要 | Vulnerable carotid plaques are extremely unstable and prone to rupture and fall off, which are closely related to transient ischemic attacks and ischemic strokes. Portable 3D ultrasound is a radiation-free and non-invasive technique that can conveniently provide more comprehensive dimensional information compared to 2D ultrasound. Five types of feature parameters including the carotid volumetric stenosis rate (CSR), low-intensity rate (LIR), grayscale median (GSM), fractal dimension (FD), and 3D gray level cooccurrence matrix (GLCM) properties were extracted from the 3D image volumes respectively and input into a support vector machine (SVM) classifier. The average accuracy of the SVM model was 0.73± 0.05, with a sensitivity of 0.75± 0.08 and a specificity of 0.74 ± 0.05. The SVM classifier using extracted features as input performed acceptably in the classification of carotid plaque vulnerability since dimension, grayscale, spatial structure, and texture features were considered. It demonstrated that the proposed method has the potential to screen and diagnose carotid plaques based on portable 3D ultrasound. |
会议录编者/会议主办者 | IEEE ; IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society (UFFC) |
关键词 | Machine learning Carotid plaque Classification Portable 3D ultrasound |
会议名称 | 2024 IEEE International Ultrasonics Symposium (IUS) |
出版地 | IEEE |
会议地点 | Taipei, China |
会议日期 | 22-26 September 2024 |
学科门类 | 工学::计算机科学与技术(可授工学、理学学位) |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/424501 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_郑锐组 |
通讯作者 | Chen, Man; Zheng, Rui |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 3.Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Xu, Duo,Zhang, Haibin,Huang, Yunqian,et al. Development of Machine Learning Based Classification Method for Carotid Plaques Using Portable 3D Ultrasound[C]//IEEE ; IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society (UFFC). IEEE,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。