ShanghaiTech University Knowledge Management System
VideoRF: Rendering Dynamic Radiance Fields as 2D Feature Video Streams | |
2024-06-22 | |
会议录名称 | 2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
![]() |
ISSN | 1063-6919 |
页码 | 470-481 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR52733.2024.00052 |
摘要 | Neural Radiance Fields (NeRFs) excel in photorealistically rendering static scenes. However, rendering dynamic, long-duration radiance fields on ubiquitous devices remains challenging, due to data storage and computational constraints. In this paper, we introduce VideoRF, the first approach to enable real-time streaming and rendering of dynamic human-centric radiance fields on mobile platforms. At the core is a serialized 2D feature image stream representing the 4D radiance field all in one. We introduce a tailored training scheme directly applied to this 2D domain to impose the temporal and spatial redundancy of the feature image stream. By leveraging the redundancy, we show that the feature image stream can be efficiently compressed by 2D video codecs, which allows us to exploit video hardware accelerators to achieve real-time decoding. On the other hand, based on the feature image stream, we propose a novel rendering pipeline for VideoRF, which has specialized space mappings to query radiance properties efficiently. Paired with a deferred shading model, VideoRF has the capability of real-time rendering on mobile devices thanks to its efficiency. We have developed a real-time interactive player that enables online streaming and rendering of dynamic scenes, offering a seamless and immersive free-viewpoint experience across a range of devices, from desktops to mobile phones. Our project page is available at https://aoliao12138.github.io/VideoRF/. |
会议名称 | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 |
会议地点 | Seattle, WA, USA |
会议日期 | 16-22 June 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20244317260143 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/424443 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_PI研究组_许岚组 |
共同第一作者 | Kaixin Yao |
通讯作者 | Jingyi Yu; Lan Xu; Minye Wu |
作者单位 | 1.ShanghaiTech University 2.NeuDim 3.Shanghai Jiao Tong University 4.KU Leuven |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Liao Wang,Kaixin Yao,Chengcheng Guo,et al. VideoRF: Rendering Dynamic Radiance Fields as 2D Feature Video Streams[C]:IEEE Computer Society,2024:470-481. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。