VideoRF: Rendering Dynamic Radiance Fields as 2D Feature Video Streams
2024-06-22
会议录名称2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
ISSN1063-6919
页码470-481
发表状态已发表
DOI10.1109/CVPR52733.2024.00052
摘要

Neural Radiance Fields (NeRFs) excel in photorealistically rendering static scenes. However, rendering dynamic, long-duration radiance fields on ubiquitous devices remains challenging, due to data storage and computational constraints. In this paper, we introduce VideoRF, the first approach to enable real-time streaming and rendering of dynamic human-centric radiance fields on mobile platforms. At the core is a serialized 2D feature image stream representing the 4D radiance field all in one. We introduce a tailored training scheme directly applied to this 2D domain to impose the temporal and spatial redundancy of the feature image stream. By leveraging the redundancy, we show that the feature image stream can be efficiently compressed by 2D video codecs, which allows us to exploit video hardware accelerators to achieve real-time decoding. On the other hand, based on the feature image stream, we propose a novel rendering pipeline for VideoRF, which has specialized space mappings to query radiance properties efficiently. Paired with a deferred shading model, VideoRF has the capability of real-time rendering on mobile devices thanks to its efficiency. We have developed a real-time interactive player that enables online streaming and rendering of dynamic scenes, offering a seamless and immersive free-viewpoint experience across a range of devices, from desktops to mobile phones. Our project page is available at https://aoliao12138.github.io/VideoRF/.

会议名称2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
会议地点Seattle, WA, USA
会议日期16-22 June 2024
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20244317260143
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/424443
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
信息科学与技术学院_PI研究组_许岚组
共同第一作者Kaixin Yao
通讯作者Jingyi Yu; Lan Xu; Minye Wu
作者单位
1.ShanghaiTech University
2.NeuDim
3.Shanghai Jiao Tong University
4.KU Leuven
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Liao Wang,Kaixin Yao,Chengcheng Guo,et al. VideoRF: Rendering Dynamic Radiance Fields as 2D Feature Video Streams[C]:IEEE Computer Society,2024:470-481.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liao Wang]的文章
[Kaixin Yao]的文章
[Chengcheng Guo]的文章
百度学术
百度学术中相似的文章
[Liao Wang]的文章
[Kaixin Yao]的文章
[Chengcheng Guo]的文章
必应学术
必应学术中相似的文章
[Liao Wang]的文章
[Kaixin Yao]的文章
[Chengcheng Guo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@CVPR52733.2024.00052.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。