ShanghaiTech University Knowledge Management System
I'M HOI: Inertia-Aware Monocular Capture of 3D Human-Object Interactions | |
2024 | |
会议录名称 | 2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
![]() |
ISSN | 1063-6919 |
页码 | 729-741 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR52733.2024.00076 |
摘要 | We are living in a world surrounded by diverse and “smart” devices with rich modalities of sensing ability. Conveniently capturing the interactions between us humans and these objects remains far-reaching. In this paper, we present I'm-HOI, a monocular scheme to faithfully capture the 3D motions of both the human and object in a novel setting: using a minimal amount of RGB camera and object-mounted Inertial Measurement Unit (IMU). It combines general motion inference and category-aware refinement. For the former, we introduce a holistic human-object tracking method to fuse the IMU signals and the RGB stream and progressively recover the human motions and subsequently the companion object motions. For the latter, we tailor a category-aware motion diffusion model, which is conditioned on both the raw IMU observations and the results from the previous stage under over-parameterization representation. It significantly refines the initial results and generates vivid body, hand, and object motions. Moreover, we contribute a large dataset with ground truth human and object motions, dense RGB inputs, and rich object-mounted IMU measurements. Exten-sive experiments demonstrate the effectiveness of I'm-HOI under a hybrid capture setting. Our dataset and code will be released to the community. |
关键词 | 3D modeling Holmium alloys Human engineering Motion tracking Object detection Sensor data fusion Three dimensional computer graphics 3D motion Human motions Human-object interaction Inertial measurements units Motion capture Object motion RGB cameras Sensing abilities Sensor fusion Smart devices |
会议地点 | Seattle, WA, USA |
会议日期 | 16-22 June 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20250917942119 |
EI主题词 | Motion capture |
EI分类号 | 101.5 Ergonomics and Human Factors Engineering ; 1106.2 Data Handling and Data Processing ; 1106.3.1 Image Processing ; 1106.8 Computer Vision ; 1201.12 Modeling and Simulation ; 202.7.2 Rare Earth Materials ; 902.1 Engineering Graphics |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/424436 |
专题 | 信息科学与技术学院_PI研究组_许岚组 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_汪婧雅组 |
作者单位 | 1.ShanghaiTech University 2.Shanghai Advanced Research Institute, Chinese Academy of Sciences 3.University of Chinese Academy of Sciences |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Chengfeng Zhao,Juze Zhang,Jiashen Du,et al. I'M HOI: Inertia-Aware Monocular Capture of 3D Human-Object Interactions[C]:IEEE Computer Society,2024:729-741. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。