ShanghaiTech University Knowledge Management System
Spiking-NeRF: Spiking Neural Network for Energy-Efficient Neural Rendering | |
2024-08-26 | |
发表期刊 | ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS (IF:2.1[JCR-2023],2.1[5-Year]) |
ISSN | 1550-4832 |
EISSN | 1550-4840 |
卷号 | 20期号:3 |
发表状态 | 已发表 |
DOI | 10.1145/3675808 |
摘要 | Artificial Neural Networks (ANNs) have achieved remarkable performance in many artificial intelligence tasks. As the application scenarios become more sophisticated, the computation and energy consumption of ANNs are also constantly increasing, which poses a challenge for deploying ANNs on energy-constrained devices. Spiking Neural Networks (SNNs) provide a promising solution to build energy-efficiency neural networks. However, the current training methods of SNNs cannot output values as precise as ANNs. This limits the applications of SNNs to relatively simple image classification tasks. In this article, we extend the application of SNNs to neural rendering tasks and propose an energy-efficient spiking neural rendering model, called Spiking-NeRF (Spiking Neural Radiance Fields). We first analyze the ANN-to-SNN conversion theory and propose an output scheme for SNNs to obtain the precise scene property values. Then we customize the parameter normalization method for the special network architecture of neural rendering. Furthermore, we present an early termination strategy (ETS) based on the discrete nature of spikes to reduce energy consumption. We evaluate the performance of Spiking-NeRF on both realistic and synthetic scenes. Experimental results show that Spiking-NeRF can achieve comparable rendering performance to ANN-based NeRF with up to energy reduction. © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM. |
关键词 | Energy efficiency Neural network models Application scenario Constrained devices Energy efficient Energy-constrained Energy-consumption Neural radiance field Neural rendering Neural-networks Performance Spiking neural network |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering ; Science & Technology - Other Topics |
WOS类目 | Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Nanoscience & Nanotechnology |
WOS记录号 | WOS:001315125000002 |
出版者 | Association for Computing Machinery |
EI入藏号 | 20243516964212 |
EI主题词 | Rendering (computer graphics) |
EI分类号 | 1008.6 ; 1009.4 ; 1101 ; 1106.3.1 ; 1106.5 |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/421424 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_周平强组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
通讯作者 | Li, Ziwen |
作者单位 | School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai; 201210, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Li, Ziwen,Ma, Yu,Zhou, Jindong,et al. Spiking-NeRF: Spiking Neural Network for Energy-Efficient Neural Rendering[J]. ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS,2024,20(3). |
APA | Li, Ziwen,Ma, Yu,Zhou, Jindong,&Zhou, Pingqiang.(2024).Spiking-NeRF: Spiking Neural Network for Energy-Efficient Neural Rendering.ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS,20(3). |
MLA | Li, Ziwen,et al."Spiking-NeRF: Spiking Neural Network for Energy-Efficient Neural Rendering".ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS 20.3(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li, Ziwen]的文章 |
[Ma, Yu]的文章 |
[Zhou, Jindong]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li, Ziwen]的文章 |
[Ma, Yu]的文章 |
[Zhou, Jindong]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li, Ziwen]的文章 |
[Ma, Yu]的文章 |
[Zhou, Jindong]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。