消息
×
loading..
LoCI-DiffCom: Longitudinal Consistency-Informed Diffusion Model for 3D Infant Brain Image Completion
2024
会议录名称MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II (IF:0.402[JCR-2005],0.000[5-Year])
ISSN0302-9743
卷号15002
发表状态已发表
DOI10.1007/978-3-031-72069-7_24
摘要The infant brain undergoes rapid development in the first few years after birth. Compared to cross-sectional studies, longitudinal studies can depict the trajectories of infants' brain development with higher accuracy, statistical power and flexibility. However, the collection of infant longitudinal magnetic resonance (MR) data suffers a notorious dropout problem, resulting in incomplete datasets with missing time points. This limitation significantly impedes subsequent neuroscience and clinical modeling. Yet, existing deep generative models are facing difficulties in missing brain image completion, due to sparse data and the nonlinear, dramatic contrast/geometric variations in the developing brain. We propose LoCI-DiffCom, a novel Longitudinal Consistency-Informed Diffusion model for infant brain image Completion, which integrates the images from preceding and subsequent time points to guide a diffusion model for generating high-fidelity missing data. Our designed LoCI module can work on highly sparse sequences, relying solely on data from two temporal points. Despite wide separation and diversity between age time points, our approach can extract individualized developmental features while ensuring context-aware consistency. Our experiments on a large infant brain MR dataset demonstrate its effectiveness with consistent performance on missing infant brain MR completion even in big gap scenarios, aiding in better delineation of early developmental trajectories.
关键词Medical image generation Infant brain development Diffusion model Magnetic resonance imaging (MRI)
会议名称27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Palmeraie Conf Ctr,Marrakesh,MOROCCO
会议日期OCT 06-10, 2024
URL查看原文
收录类别CPCI-S
语种英语
资助项目STI 2030-Major Projects[2022ZD0209000] ; Shanghai Pilot Program for Basic Research - Chinese Academy of Science, Shanghai Branch[JCYJ-SHFY-2022-014] ; Key Program of the Xiamen Medical and Health[3502Z20234013]
WOS研究方向Computer Science ; Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001342225800024
出版者SPRINGER INTERNATIONAL PUBLISHING AG
EISSN1611-3349
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/421416
专题生物医学工程学院_硕士生
物质科学与技术学院_博士生
信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_沈定刚组
生物医学工程学院_PI研究组_王乾组
生物医学工程学院_PI研究组_张寒组
生物医学工程学院_硕士生
生物医学工程学院_硕士生
生物医学工程学院_硕士生
共同第一作者Tianli Tao; Yitian Tao
通讯作者Han Zhang
作者单位
ShanghaiTech University
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Zihao Zhu,Tianli Tao,Yitian Tao,et al. LoCI-DiffCom: Longitudinal Consistency-Informed Diffusion Model for 3D Infant Brain Image Completion[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zihao Zhu]的文章
[Tianli Tao]的文章
[Yitian Tao]的文章
百度学术
百度学术中相似的文章
[Zihao Zhu]的文章
[Tianli Tao]的文章
[Yitian Tao]的文章
必应学术
必应学术中相似的文章
[Zihao Zhu]的文章
[Tianli Tao]的文章
[Yitian Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。