| |||||||
ShanghaiTech University Knowledge Management System
LoCI-DiffCom: Longitudinal Consistency-Informed Diffusion Model for 3D Infant Brain Image Completion | |
2024 | |
会议录名称 | MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II (IF:0.402[JCR-2005],0.000[5-Year]) |
ISSN | 0302-9743 |
卷号 | 15002 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-72069-7_24 |
摘要 | The infant brain undergoes rapid development in the first few years after birth. Compared to cross-sectional studies, longitudinal studies can depict the trajectories of infants' brain development with higher accuracy, statistical power and flexibility. However, the collection of infant longitudinal magnetic resonance (MR) data suffers a notorious dropout problem, resulting in incomplete datasets with missing time points. This limitation significantly impedes subsequent neuroscience and clinical modeling. Yet, existing deep generative models are facing difficulties in missing brain image completion, due to sparse data and the nonlinear, dramatic contrast/geometric variations in the developing brain. We propose LoCI-DiffCom, a novel Longitudinal Consistency-Informed Diffusion model for infant brain image Completion, which integrates the images from preceding and subsequent time points to guide a diffusion model for generating high-fidelity missing data. Our designed LoCI module can work on highly sparse sequences, relying solely on data from two temporal points. Despite wide separation and diversity between age time points, our approach can extract individualized developmental features while ensuring context-aware consistency. Our experiments on a large infant brain MR dataset demonstrate its effectiveness with consistent performance on missing infant brain MR completion even in big gap scenarios, aiding in better delineation of early developmental trajectories. |
关键词 | Medical image generation Infant brain development Diffusion model Magnetic resonance imaging (MRI) |
会议名称 | 27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Palmeraie Conf Ctr,Marrakesh,MOROCCO |
会议日期 | OCT 06-10, 2024 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
资助项目 | STI 2030-Major Projects[2022ZD0209000] ; Shanghai Pilot Program for Basic Research - Chinese Academy of Science, Shanghai Branch[JCYJ-SHFY-2022-014] ; Key Program of the Xiamen Medical and Health[3502Z20234013] |
WOS研究方向 | Computer Science ; Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001342225800024 |
出版者 | SPRINGER INTERNATIONAL PUBLISHING AG |
EISSN | 1611-3349 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/421416 |
专题 | 生物医学工程学院_硕士生 物质科学与技术学院_博士生 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_PI研究组_王乾组 生物医学工程学院_PI研究组_张寒组 生物医学工程学院_硕士生 生物医学工程学院_硕士生 生物医学工程学院_硕士生 |
共同第一作者 | Tianli Tao; Yitian Tao |
通讯作者 | Han Zhang |
作者单位 | ShanghaiTech University |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Zihao Zhu,Tianli Tao,Yitian Tao,et al. LoCI-DiffCom: Longitudinal Consistency-Informed Diffusion Model for 3D Infant Brain Image Completion[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zihao Zhu]的文章 |
[Tianli Tao]的文章 |
[Yitian Tao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zihao Zhu]的文章 |
[Tianli Tao]的文章 |
[Yitian Tao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zihao Zhu]的文章 |
[Tianli Tao]的文章 |
[Yitian Tao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。