| |||||||
ShanghaiTech University Knowledge Management System
Distributed Sparse Covariance Matrix Estimation | |
2024-07-11 | |
会议录名称 | 2024 IEEE 13RD SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM)
![]() |
ISSN | 1551-2282 |
发表状态 | 已发表 |
DOI | 10.1109/SAM60225.2024.10636623 |
摘要 | Covariance matrix estimation is a crucial problem in many areas related to data analysis. While centralized sparse covariance matrix estimators have received extensive attention, practical considerations such as communication efficiency and privacy constraints often make centralizing data impractical in many real-world scenarios. This necessitates the development of distributed covariance matrix estimation methods. In this paper, we present a novel distributed estimator for a sparse covariance matrix over networks by minimizing the sum of all agents' losses based on $\ell_{1}$ penalized Gaussian likelihood. To solve this constrained non-convex, non-Lipschitz-smooth optimization problem without relying on a central processor, we propose a straightforward network covariance iterative shrinkage-thresholding algorithm (network C-ISTA) with provable convergence. Numerical simulations demonstrate the convergence and impressive estimation performance of the network C-ISTA algorithm, confirming its effectiveness under decentralized settings. |
关键词 | Constrained optimization Convex optimization Covariance matrix Data privacy Iterative methods Maximum likelihood estimation Optimization algorithms Centralised Communication privacy Covariance matrices Covariance matrix estimation Decentralized optimization Iterative shrinkagethresholding algorithms Ma ximum likelihoods Maximum-likelihood Nonconvex optimization Sparsity |
会议名称 | 13rd IEEE Sensor Array and Multichannel Signal Processing Workshop, SAM 2024 |
会议地点 | Corvallis, OR, USA |
会议日期 | 8-11 July 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20243717024192 |
EI主题词 | Differential privacy |
EISSN | 2151-870X |
EI分类号 | 1106.1 ; 1106.2 ; 1108 ; 1108.1 ; 1201 ; 1201.7 ; 1201.9 ; 1202 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/421370 |
专题 | 信息科学与技术学院_PI研究组_赵子平组 信息科学与技术学院_博士生 |
作者单位 | 1.School of Info. Sci. and Tech., ShanghaiTech University, Shanghai, China 2.School of Elec. Eng. and Comp. Sci., The Pennsylvania State University, PA, USA |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Wenfu Xia,Ziping Zhao,Ying Sun. Distributed Sparse Covariance Matrix Estimation[C]:IEEE Computer Society,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wenfu Xia]的文章 |
[Ziping Zhao]的文章 |
[Ying Sun]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wenfu Xia]的文章 |
[Ziping Zhao]的文章 |
[Ying Sun]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wenfu Xia]的文章 |
[Ziping Zhao]的文章 |
[Ying Sun]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。