Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation
2024
会议录名称MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II (IF:0.402[JCR-2005],0.000[5-Year])
ISSN0302-9743
卷号15002
发表状态已发表
DOI10.1007/978-3-031-72069-7_23
摘要Automatic and accurate segmentation of brain MR images throughout the human lifespan into tissue and structure is crucial for understanding brain development and diagnosing diseases. However, challenges arise from the intricate variations in brain appearance due to rapid early brain development, aging, and disorders, compounded by the limited availability of manually-labeled datasets. In response, we present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI. Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels, followed by the incorporation of knowledge-driven embeddings learned from image-text alignment into the models. The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes, enabling models to learn structural feature embeddings across diverse age groups. Experimental findings demonstrate the superiority and robustness of our proposed method, particularly noticeable when employing Swin UNETR as the backbone. Our approach achieves average DSC values of 95.17% and 94.19% for brain tissue and structure segmentation, respectively. Our code is available at https://github.com/TL9792/KGPL.
关键词Brain MRI segmentation Across the lifespan Knowledge-guided prompt learning Fine tuning Transfer learning
会议名称27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Palmeraie Conf Ctr,Marrakesh,MOROCCO
会议日期OCT 06-10, 2024
URL查看原文
收录类别CPCI-S
语种英语
资助项目National Natural Science Foundation of China["62131015","62250710165","U23A20295"] ; STI 2030Major Projects[2022ZD0209000] ; Shanghai Municipal Central Guided Local Science and Technology Development Fund[YDZX20233100001001] ; Science and Technology Commission of Shanghai Municipality (STCSM)[21010502600] ; Key R&D Program of Guangdong Province, China["2023B0303040001","2021B0101420006"]
WOS研究方向Computer Science ; Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001342225800023
出版者SPRINGER INTERNATIONAL PUBLISHING AG
EISSN1611-3349
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/421325
专题生物医学工程学院_PI研究组_沈定刚组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
生物医学工程学院_博士生
通讯作者Shi, Feng; Shen, Dinggang
作者单位
1.School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
2.Shanghai United Imaging Intelligence Co., Ltd. Shanghai 200230, China
3.Shanghai Clinical Research and Trial Center, Shanghai 201210, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Teng, Lin,Zhao, Zihao,Huang, Jiawei,et al. Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Teng, Lin]的文章
[Zhao, Zihao]的文章
[Huang, Jiawei]的文章
百度学术
百度学术中相似的文章
[Teng, Lin]的文章
[Zhao, Zihao]的文章
[Huang, Jiawei]的文章
必应学术
必应学术中相似的文章
[Teng, Lin]的文章
[Zhao, Zihao]的文章
[Huang, Jiawei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。