ShanghaiTech University Knowledge Management System
Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation | |
2024 | |
会议录名称 | MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II (IF:0.402[JCR-2005],0.000[5-Year]) |
ISSN | 0302-9743 |
卷号 | 15002 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-72069-7_23 |
摘要 | Automatic and accurate segmentation of brain MR images throughout the human lifespan into tissue and structure is crucial for understanding brain development and diagnosing diseases. However, challenges arise from the intricate variations in brain appearance due to rapid early brain development, aging, and disorders, compounded by the limited availability of manually-labeled datasets. In response, we present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI. Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels, followed by the incorporation of knowledge-driven embeddings learned from image-text alignment into the models. The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes, enabling models to learn structural feature embeddings across diverse age groups. Experimental findings demonstrate the superiority and robustness of our proposed method, particularly noticeable when employing Swin UNETR as the backbone. Our approach achieves average DSC values of 95.17% and 94.19% for brain tissue and structure segmentation, respectively. Our code is available at https://github.com/TL9792/KGPL. |
关键词 | Brain MRI segmentation Across the lifespan Knowledge-guided prompt learning Fine tuning Transfer learning |
会议名称 | 27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Palmeraie Conf Ctr,Marrakesh,MOROCCO |
会议日期 | OCT 06-10, 2024 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China["62131015","62250710165","U23A20295"] ; STI 2030Major Projects[2022ZD0209000] ; Shanghai Municipal Central Guided Local Science and Technology Development Fund[YDZX20233100001001] ; Science and Technology Commission of Shanghai Municipality (STCSM)[21010502600] ; Key R&D Program of Guangdong Province, China["2023B0303040001","2021B0101420006"] |
WOS研究方向 | Computer Science ; Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001342225800023 |
出版者 | SPRINGER INTERNATIONAL PUBLISHING AG |
EISSN | 1611-3349 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/421325 |
专题 | 生物医学工程学院_PI研究组_沈定刚组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 生物医学工程学院_博士生 |
通讯作者 | Shi, Feng; Shen, Dinggang |
作者单位 | 1.School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China 2.Shanghai United Imaging Intelligence Co., Ltd. Shanghai 200230, China 3.Shanghai Clinical Research and Trial Center, Shanghai 201210, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Teng, Lin,Zhao, Zihao,Huang, Jiawei,et al. Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。