ShanghaiTech University Knowledge Management System
Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL | |
2024 | |
会议录名称 | LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
![]() |
ISSN | 0302-9743 |
卷号 | 14875 LNAI |
页码 | 50-61 |
发表状态 | 已发表 |
DOI | 10.1007/978-981-97-5663-6_5 |
摘要 | Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias. Nevertheless, an ongoing controversy exists over the extent to which LLMs can grasp structured semantics. To assess this, we propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs’ ability to extract structured semantics. In our assessment, we employ the prompting approach, which leads to the creation of our few-shot SRL parser, called PromptSRL. PromptSRL enables LLMs to map natural languages to explicit semantic structures, which provides an interpretable window into the properties of LLMs. We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential. Additionally, limitations of LLMs are observed in C-arguments, etc. Lastly, we are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. |
关键词 | Computational linguistics Case-studies Interpretability Language model Language understanding Large language model Modeling abilities Natural languages Semantic role labeling Semantic structures Structured semantic |
会议名称 | 20th International Conference on Intelligent Computing, ICIC 2024 |
会议地点 | Tianjin, China |
会议日期 | August 5, 2024 - August 8, 2024 |
收录类别 | EI |
语种 | 英语 |
出版者 | Springer Science and Business Media Deutschland GmbH |
EI入藏号 | 20243416890691 |
EI主题词 | Semantics |
EISSN | 1611-3349 |
EI分类号 | 721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/415592 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_屠可伟组 |
通讯作者 | Cheng, Ning; Yan, Zhaohui; Han, Wenjuan |
作者单位 | 1.Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China; 2.Shanghai Tech University, Shanghai, China; 3.Tsinghua University, Beijing, China; 4.University of Oxford, Oxford, United Kingdom; 5.Beijing Institute for General Artificial Intelligence, Beijing, China; 6.China Railway Design Corporation, Tianjin, China; 7.National Engineering Research Center for Digital Construction and Evaluation of Urban Rail Transit, Tianjin, China |
通讯作者单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Cheng, Ning,Yan, Zhaohui,Wang, Ziming,et al. Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL[C]:Springer Science and Business Media Deutschland GmbH,2024:50-61. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。