Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL
2024
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号14875 LNAI
页码50-61
发表状态已发表
DOI10.1007/978-981-97-5663-6_5
摘要

Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias. Nevertheless, an ongoing controversy exists over the extent to which LLMs can grasp structured semantics. To assess this, we propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs’ ability to extract structured semantics. In our assessment, we employ the prompting approach, which leads to the creation of our few-shot SRL parser, called PromptSRL. PromptSRL enables LLMs to map natural languages to explicit semantic structures, which provides an interpretable window into the properties of LLMs. We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential. Additionally, limitations of LLMs are observed in C-arguments, etc. Lastly, we are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.

关键词Computational linguistics Case-studies Interpretability Language model Language understanding Large language model Modeling abilities Natural languages Semantic role labeling Semantic structures Structured semantic
会议名称20th International Conference on Intelligent Computing, ICIC 2024
会议地点Tianjin, China
会议日期August 5, 2024 - August 8, 2024
收录类别EI
语种英语
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20243416890691
EI主题词Semantics
EISSN1611-3349
EI分类号721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/415592
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_屠可伟组
通讯作者Cheng, Ning; Yan, Zhaohui; Han, Wenjuan
作者单位
1.Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China;
2.Shanghai Tech University, Shanghai, China;
3.Tsinghua University, Beijing, China;
4.University of Oxford, Oxford, United Kingdom;
5.Beijing Institute for General Artificial Intelligence, Beijing, China;
6.China Railway Design Corporation, Tianjin, China;
7.National Engineering Research Center for Digital Construction and Evaluation of Urban Rail Transit, Tianjin, China
通讯作者单位上海科技大学
推荐引用方式
GB/T 7714
Cheng, Ning,Yan, Zhaohui,Wang, Ziming,et al. Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL[C]:Springer Science and Business Media Deutschland GmbH,2024:50-61.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cheng, Ning]的文章
[Yan, Zhaohui]的文章
[Wang, Ziming]的文章
百度学术
百度学术中相似的文章
[Cheng, Ning]的文章
[Yan, Zhaohui]的文章
[Wang, Ziming]的文章
必应学术
必应学术中相似的文章
[Cheng, Ning]的文章
[Yan, Zhaohui]的文章
[Wang, Ziming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。