消息
×
loading..
A review of deep-learning-based super-resolution: From methods to applications
2025-01
发表期刊PATTERN RECOGNITION (IF:7.5[JCR-2023],7.6[5-Year])
ISSN0031-3203
EISSN1873-5142
卷号157
发表状态已发表
DOI10.1016/j.patcog.2024.110935
摘要

Super-resolution (SR), aiming to super-resolve degraded low-resolution image to recover the corresponding high-resolution counterpart, is an important and challenging task in computer vision, and with various applications. The emergence of deep learning (DL) has significantly advanced SR methods, surpassing the performance of traditional techniques. This paper presents a comprehensive survey of DL-based SR methods encompassing single image super resolution (SISR) and multiple image super resolution (MISR) methods, along with their applications and limitations. In SISR methods, addressing individual images independently, we review blind and non-blind SR methods. Additionally, within MISR, we delve into multi-frame, multi-view, and reference-based SR methods. DL-based SR methods are categorized from the application perspective and a taxonomy is proposed. Finally, we present research prospects and future directions. © 2024

关键词Deep learning Degradation model Image super resolutions Multiple image Multiple image super-resolution Single image super-resolution Single images Superresolution Superresolution methods
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Key Research and Development Program of China[2021ZD0114505] ; National Natural Science Foundation of China[62303321]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001302255600001
出版者Elsevier Ltd
EI入藏号20243516943362
EI主题词Deep learning
EI分类号1101.2.1
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/415586
专题信息科学与技术学院
信息科学与技术学院_本科生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_刘松组
通讯作者Liu, Song
作者单位
1.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
3.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Su, Hu,Li, Ying,Xu, Yifan,et al. A review of deep-learning-based super-resolution: From methods to applications[J]. PATTERN RECOGNITION,2025,157.
APA Su, Hu,Li, Ying,Xu, Yifan,Fu, Xiang,&Liu, Song.(2025).A review of deep-learning-based super-resolution: From methods to applications.PATTERN RECOGNITION,157.
MLA Su, Hu,et al."A review of deep-learning-based super-resolution: From methods to applications".PATTERN RECOGNITION 157(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Su, Hu]的文章
[Li, Ying]的文章
[Xu, Yifan]的文章
百度学术
百度学术中相似的文章
[Su, Hu]的文章
[Li, Ying]的文章
[Xu, Yifan]的文章
必应学术
必应学术中相似的文章
[Su, Hu]的文章
[Li, Ying]的文章
[Xu, Yifan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。