| |||||||
ShanghaiTech University Knowledge Management System
A review of deep-learning-based super-resolution: From methods to applications | |
2025-01 | |
发表期刊 | PATTERN RECOGNITION (IF:7.5[JCR-2023],7.6[5-Year]) |
ISSN | 0031-3203 |
EISSN | 1873-5142 |
卷号 | 157 |
发表状态 | 已发表 |
DOI | 10.1016/j.patcog.2024.110935 |
摘要 | Super-resolution (SR), aiming to super-resolve degraded low-resolution image to recover the corresponding high-resolution counterpart, is an important and challenging task in computer vision, and with various applications. The emergence of deep learning (DL) has significantly advanced SR methods, surpassing the performance of traditional techniques. This paper presents a comprehensive survey of DL-based SR methods encompassing single image super resolution (SISR) and multiple image super resolution (MISR) methods, along with their applications and limitations. In SISR methods, addressing individual images independently, we review blind and non-blind SR methods. Additionally, within MISR, we delve into multi-frame, multi-view, and reference-based SR methods. DL-based SR methods are categorized from the application perspective and a taxonomy is proposed. Finally, we present research prospects and future directions. © 2024 |
关键词 | Deep learning Degradation model Image super resolutions Multiple image Multiple image super-resolution Single image super-resolution Single images Superresolution Superresolution methods |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2021ZD0114505] ; National Natural Science Foundation of China[62303321] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:001302255600001 |
出版者 | Elsevier Ltd |
EI入藏号 | 20243516943362 |
EI主题词 | Deep learning |
EI分类号 | 1101.2.1 |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/415586 |
专题 | 信息科学与技术学院 信息科学与技术学院_本科生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_刘松组 |
通讯作者 | Liu, Song |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing, Peoples R China 2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 3.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Su, Hu,Li, Ying,Xu, Yifan,et al. A review of deep-learning-based super-resolution: From methods to applications[J]. PATTERN RECOGNITION,2025,157. |
APA | Su, Hu,Li, Ying,Xu, Yifan,Fu, Xiang,&Liu, Song.(2025).A review of deep-learning-based super-resolution: From methods to applications.PATTERN RECOGNITION,157. |
MLA | Su, Hu,et al."A review of deep-learning-based super-resolution: From methods to applications".PATTERN RECOGNITION 157(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Su, Hu]的文章 |
[Li, Ying]的文章 |
[Xu, Yifan]的文章 |
百度学术 |
百度学术中相似的文章 |
[Su, Hu]的文章 |
[Li, Ying]的文章 |
[Xu, Yifan]的文章 |
必应学术 |
必应学术中相似的文章 |
[Su, Hu]的文章 |
[Li, Ying]的文章 |
[Xu, Yifan]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。