Performance Evaluation of Multimodal Large Language Models (LLaVA and GPT-4-based ChatGPT) in Medical Image Classification Tasks
2024-06-06
会议录名称2024 IEEE 12TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI)
ISSN2575-2626
页码541-543
发表状态已发表
DOI10.1109/ICHI61247.2024.00080
摘要

Large language models (LLMs) have gained significant attention due to their prospective applications in medicine. Utilizing multimodal LLMs can potentially assist clinicians in medical image classification tasks. It is important to evaluate the performance of LLMs in medical image processing to potentially improve the medical system. We evaluated two multimodal LLMs (LLaVA and GPT-4-based ChatGPT) against the classic VGG in tumor classification across brain MRI, breast ultrasound, and kidney CT datasets. Despite LLMs facing significant hallucination issue in medical imaging, prompt engineering markedly enhanced their performance. In comparison to the baseline method, GPT-4-based ChatGPT with prompt engineering achieves 98%, 112%, and 69% of the baseline's performance in terms of accuracy (or 99%, 107%, and 62 % in terms of F1-score) in those three datasets, respectively. However, privacy, bias, accountability, and transparency concerns necessitate caution. Our study underscore LLMs' potential in medical imaging but emphasize the need for thorough performance and safety evaluations for their practical application.

会议录编者/会议主办者Computational Health Sciences, University of Minnesota ; IEEE Computer Society Technical Community on Intelligent Informatics (TCII) ; University of Florida Health (UFHealth) ; Weill Cornell Medicine Institute of Artificial Intelligence and Digital Health ; Yale University, School of Medicine
关键词Biomedical engineering Computerized tomography Error correction Medical applications Medical image processing Problem oriented languages Brain tumor MRI Brain tumors Breast ultrasound images ChatGPT GPT-4 Language model Large language model LLaVA Medical images processing Prompt engineering Tumor classification VGG
会议名称12th IEEE International Conference on Healthcare Informatics, ICHI 2024
会议地点Orlando, FL, USA
会议日期3-6 June 2024
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20243817039563
EI主题词Ultrasonic imaging
EI分类号101.1 ; 1106.1.1 ; 1106.3.1 ; 1106.5 ; 731.1.1 ; 746 Imaging Techniques ; 753.3 Ultrasonic Applications
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/414242
专题生物医学工程学院_硕士生
生物医学工程学院_PI研究组_万之瑜组
作者单位
1.Department of Biomedical Engineering, ShanghaiTech University, Shanghai, China
2.Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, USA
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Yuhang Guo,Zhiyu Wan. Performance Evaluation of Multimodal Large Language Models (LLaVA and GPT-4-based ChatGPT) in Medical Image Classification Tasks[C]//Computational Health Sciences, University of Minnesota, IEEE Computer Society Technical Community on Intelligent Informatics (TCII), University of Florida Health (UFHealth), Weill Cornell Medicine Institute of Artificial Intelligence and Digital Health, Yale University, School of Medicine:Institute of Electrical and Electronics Engineers Inc.,2024:541-543.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yuhang Guo]的文章
[Zhiyu Wan]的文章
百度学术
百度学术中相似的文章
[Yuhang Guo]的文章
[Zhiyu Wan]的文章
必应学术
必应学术中相似的文章
[Yuhang Guo]的文章
[Zhiyu Wan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。