ShanghaiTech University Knowledge Management System
Performance Evaluation of Multimodal Large Language Models (LLaVA and GPT-4-based ChatGPT) in Medical Image Classification Tasks | |
2024-06-06 | |
会议录名称 | 2024 IEEE 12TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI)
![]() |
ISSN | 2575-2626 |
页码 | 541-543 |
发表状态 | 已发表 |
DOI | 10.1109/ICHI61247.2024.00080 |
摘要 | Large language models (LLMs) have gained significant attention due to their prospective applications in medicine. Utilizing multimodal LLMs can potentially assist clinicians in medical image classification tasks. It is important to evaluate the performance of LLMs in medical image processing to potentially improve the medical system. We evaluated two multimodal LLMs (LLaVA and GPT-4-based ChatGPT) against the classic VGG in tumor classification across brain MRI, breast ultrasound, and kidney CT datasets. Despite LLMs facing significant hallucination issue in medical imaging, prompt engineering markedly enhanced their performance. In comparison to the baseline method, GPT-4-based ChatGPT with prompt engineering achieves 98%, 112%, and 69% of the baseline's performance in terms of accuracy (or 99%, 107%, and 62 % in terms of F1-score) in those three datasets, respectively. However, privacy, bias, accountability, and transparency concerns necessitate caution. Our study underscore LLMs' potential in medical imaging but emphasize the need for thorough performance and safety evaluations for their practical application. |
会议录编者/会议主办者 | Computational Health Sciences, University of Minnesota ; IEEE Computer Society Technical Community on Intelligent Informatics (TCII) ; University of Florida Health (UFHealth) ; Weill Cornell Medicine Institute of Artificial Intelligence and Digital Health ; Yale University, School of Medicine |
关键词 | Biomedical engineering Computerized tomography Error correction Medical applications Medical image processing Problem oriented languages Brain tumor MRI Brain tumors Breast ultrasound images ChatGPT GPT-4 Language model Large language model LLaVA Medical images processing Prompt engineering Tumor classification VGG |
会议名称 | 12th IEEE International Conference on Healthcare Informatics, ICHI 2024 |
会议地点 | Orlando, FL, USA |
会议日期 | 3-6 June 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20243817039563 |
EI主题词 | Ultrasonic imaging |
EI分类号 | 101.1 ; 1106.1.1 ; 1106.3.1 ; 1106.5 ; 731.1.1 ; 746 Imaging Techniques ; 753.3 Ultrasonic Applications |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/414242 |
专题 | 生物医学工程学院_硕士生 生物医学工程学院_PI研究组_万之瑜组 |
作者单位 | 1.Department of Biomedical Engineering, ShanghaiTech University, Shanghai, China 2.Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, USA |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Yuhang Guo,Zhiyu Wan. Performance Evaluation of Multimodal Large Language Models (LLaVA and GPT-4-based ChatGPT) in Medical Image Classification Tasks[C]//Computational Health Sciences, University of Minnesota, IEEE Computer Society Technical Community on Intelligent Informatics (TCII), University of Florida Health (UFHealth), Weill Cornell Medicine Institute of Artificial Intelligence and Digital Health, Yale University, School of Medicine:Institute of Electrical and Electronics Engineers Inc.,2024:541-543. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yuhang Guo]的文章 |
[Zhiyu Wan]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yuhang Guo]的文章 |
[Zhiyu Wan]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yuhang Guo]的文章 |
[Zhiyu Wan]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。