消息
×
loading..
Mitigate Position Bias with Coupled Ranking Bias on CTR Prediction
2024-05-29
状态已发表
摘要

Position bias, i.e., users’ preference of an item is affected by its placing position, is well studied in the recommender system literature. However, most existing methods ignore the widely coupled ranking bias, which is also related to the placing position of the item. Using both synthetic and industrial datasets, we first show how this widely coexisted ranking bias deteriorates the performance of the existing position bias estimation methods. To mitigate the position bias with the presence of the ranking bias, we propose a novel position bias estimation method, namely gradient interpolation, which fuses two estimation methods using a fusing weight. We further propose an adaptive method to automatically determine the optimal fusing weight. Extensive experiments on both synthetic and industrial datasets demonstrate the superior performance of the proposed methods.

关键词position bias ranking bias overestimation gradient interpolation
DOIarXiv:2405.18971
相关网址查看原文
出处Arxiv
WOS记录号PPRN:91461399
WOS类目Computer Science, Information Systems
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/414205
专题信息科学与技术学院_PI研究组_张海鹏组
通讯作者Zhao, Yao
作者单位
1.Ant Grp, Hangzhou, Peoples R China
2.ShanghaiTech Univ, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Yao,Liu, Zhining,Cai, Tianchi,et al. Mitigate Position Bias with Coupled Ranking Bias on CTR Prediction. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhao, Yao]的文章
[Liu, Zhining]的文章
[Cai, Tianchi]的文章
百度学术
百度学术中相似的文章
[Zhao, Yao]的文章
[Liu, Zhining]的文章
[Cai, Tianchi]的文章
必应学术
必应学术中相似的文章
[Zhao, Yao]的文章
[Liu, Zhining]的文章
[Cai, Tianchi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。