| |||||||
ShanghaiTech University Knowledge Management System
Mitigate Position Bias with Coupled Ranking Bias on CTR Prediction | |
2024-05-29 | |
状态 | 已发表 |
摘要 | Position bias, i.e., users’ preference of an item is affected by its placing position, is well studied in the recommender system literature. However, most existing methods ignore the widely coupled ranking bias, which is also related to the placing position of the item. Using both synthetic and industrial datasets, we first show how this widely coexisted ranking bias deteriorates the performance of the existing position bias estimation methods. To mitigate the position bias with the presence of the ranking bias, we propose a novel position bias estimation method, namely gradient interpolation, which fuses two estimation methods using a fusing weight. We further propose an adaptive method to automatically determine the optimal fusing weight. Extensive experiments on both synthetic and industrial datasets demonstrate the superior performance of the proposed methods. |
关键词 | position bias ranking bias overestimation gradient interpolation |
DOI | arXiv:2405.18971 |
相关网址 | 查看原文 |
出处 | Arxiv |
WOS记录号 | PPRN:91461399 |
WOS类目 | Computer Science, Information Systems |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/414205 |
专题 | 信息科学与技术学院_PI研究组_张海鹏组 |
通讯作者 | Zhao, Yao |
作者单位 | 1.Ant Grp, Hangzhou, Peoples R China 2.ShanghaiTech Univ, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Zhao, Yao,Liu, Zhining,Cai, Tianchi,et al. Mitigate Position Bias with Coupled Ranking Bias on CTR Prediction. 2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。