| |||||||
ShanghaiTech University Knowledge Management System
CIResDiff: A Clinically-Informed Residual Diffusion Model for Predicting Idiopathic Pulmonary Fibrosis Progression | |
2025 | |
会议录名称 | MACHINE LEARNING IN MEDICAL IMAGING, PT I, MLMI 2024 (IF:0.402[JCR-2005],0.000[5-Year]) |
ISSN | 0302-9743 |
卷号 | 15241 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-73284-3_9 |
摘要 | The progression of Idiopathic Pulmonary Fibrosis (IPF) significantly correlates with higher patient mortality rates. Early detection of IPF progression is critical for initiating timely treatment, which can effectively slow down the advancement of the disease. However, the current clinical criteria define disease progression requiring two CT scans with a one-year interval, presenting a dilemma: a disease progression is identified only after the disease has already progressed. To this end, in this paper, we develop a novel diffusion model to accurately predict the progression of IPF by generating patient's follow-up CT scan from the initial CT scan. Specifically, from the clinical prior knowledge, we tailor improvements to the traditional diffusion model and propose a Clinically-Informed Residual Diffusion model, called CIResDiff. The key innovations of CIResDiff include 1) performing the target region pre-registration to align the lung regions of two CT scans at different time points for reducing the generation difficulty, 2) adopting the residual diffusion instead of traditional diffusion to enable the model focus more on differences (i.e., lesions) between the two CT scans rather than the largely identical anatomical content, and 3) designing the clinically-informed process based on CLIP technology to integrate lung function information which is highly relevant to diagnosis into the reverse process for assisting generation. Extensive experiments on clinical data demonstrate that our approach can outperform state-of-the-art methods and effectively predict the progression of IPF. |
关键词 | Prediction of pulmonary fibrosis progression Residual diffusion model Clinically Informed CLIP-based text processing |
会议名称 | 15th International Workshop on Machine Learning in Medical Imaging |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | null,Marrakesh,MOROCCO |
会议日期 | OCT 06, 2024 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China["U23A20295","62131015","62250710165","2022ZD0209000"] ; Shanghai Municipal Central Guided Local Science and Technology Development Fund[YDZX20233100001001] ; China Ministry of Science and Technology[STI2030-Major Projects-2022ZD0213100] ; Key R&D Program of Guangdong Province, China["2023B0303040001","2021B0101420006"] ; ERC IMI["10100 5122","952172"] ; MRC[MC/PC/21013] ; Royal Society[IECn NS FCn211235] ; Boehringer Ingelheim Ltd[RDA01] ; Wellcome Leap Dynamic Resilience["EP/Z002206/1","MR/V023799/1"] |
WOS研究方向 | Computer Science ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001424557900009 |
出版者 | SPRINGER INTERNATIONAL PUBLISHING AG |
EISSN | 1611-3349 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/414201 |
专题 | 生物医学工程学院 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_沈定刚组 |
通讯作者 | Shen, Dinggang |
作者单位 | 1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China 2.ShanghaiTech Univ, State Key Lab Adv Med Mat & Devices, Shanghai, Peoples R China 3.Imperial Coll London, Bioengn Dept, London, England 4.Imperial Coll London, Imperial X, London, England 5.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China 6.Shanghai Artificial Intelligence Lab, Shanghai 200232, Peoples R China 7.Imperial Coll London, Natl Heart & Lung Inst, London, England 8.Shanghai United Imaging Intelligence Co Ltd, Shanghai, Peoples R China 9.Royal Brompton Hosp, Cardiovasc Res Ctr, London, England 10.Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England |
第一作者单位 | 生物医学工程学院; 上海科技大学 |
通讯作者单位 | 生物医学工程学院; 上海科技大学 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Jiang, Caiwen,Xing, Xiaodan,Oul, Zaixin,et al. CIResDiff: A Clinically-Informed Residual Diffusion Model for Predicting Idiopathic Pulmonary Fibrosis Progression[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2025. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。