ShanghaiTech University Knowledge Management System
Power quality disturbance signal classification in microgrid based on kernel extreme learning machine | |
2024-08-01 | |
发表期刊 | ELECTRONICS LETTERS (IF:0.7[JCR-2023],0.9[5-Year]) |
ISSN | 0013-5194 |
EISSN | 1350-911X |
卷号 | 60期号:16 |
发表状态 | 已发表 |
DOI | 10.1049/ell2.13312 |
摘要 | ["This paper presents a kernel extreme learning machine (KELM) integrated with the improved whale optimization algorithm (IWOA) to address the power quality disturbance (PQD) issue in microgrids. First, an adaptive variational mode decomposition method is employed to extract PQD signals in microgrids. Then, the IWOA is utilized to optimize the penalty factor and kernel function parameters for the KELM classifier model, thereby enhancing the performance of the classifier. Furthermore, the test results indicate that the proposed IWOA-KELM achieves high classification accuracy and rapid convergence for complex PQD signals.","This paper presents a kernel extreme learning machine integrated with the improved whale optimization algorithm to address power quality issues in microgrids resulting from distributed power access. In this work, the adaptive variational mode decomposition method is employed to decompose the complex disturbance signals in microgrids. image"] |
关键词 | learning (artificial intelligence) power grids |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[52377079] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Electrical & Electronic |
WOS记录号 | WOS:001289746000001 |
出版者 | WILEY |
EI入藏号 | 20243416898845 |
EI主题词 | Adversarial machine learning |
EI分类号 | 1006 ; 1101.2 ; 706.1 Electric Power Systems ; 716.1 Information Theory and Signal Processing |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/414192 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_叶朝锋组 |
通讯作者 | Jing, Guoxiu |
作者单位 | 1.Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Peoples R China 2.State Grid Luohe Power Supply Co, Luohe 462000, Peoples R China 3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Jing, Guoxiu,Wang, Dengke,Xiao, Qi,et al. Power quality disturbance signal classification in microgrid based on kernel extreme learning machine[J]. ELECTRONICS LETTERS,2024,60(16). |
APA | Jing, Guoxiu,Wang, Dengke,Xiao, Qi,Shen, Qianxiang,&Huang, Bonan.(2024).Power quality disturbance signal classification in microgrid based on kernel extreme learning machine.ELECTRONICS LETTERS,60(16). |
MLA | Jing, Guoxiu,et al."Power quality disturbance signal classification in microgrid based on kernel extreme learning machine".ELECTRONICS LETTERS 60.16(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。