DiffPROTACs is a deep learning-based generator for proteolysis targeting chimeras
2024-08-05
发表期刊BRIEFINGS IN BIOINFORMATICS
ISSN1467-5463
EISSN1477-4054
卷号25期号:5
发表状态已发表
DOI10.1093/bib/bbae358
摘要PROteolysis TArgeting Chimeras (PROTACs) has recently emerged as a promising technology. However, the design of rational PROTACs, especially the linker component, remains challenging due to the absence of structure-activity relationships and experimental data. Leveraging the structural characteristics of PROTACs, fragment-based drug design (FBDD) provides a feasible approach for PROTAC research. Concurrently, artificial intelligence-generated content has attracted considerable attention, with diffusion models and Transformers emerging as indispensable tools in this field. In response, we present a new diffusion model, DiffPROTACs, harnessing the power of Transformers to learn and generate new PROTAC linkers based on given ligands. To introduce the essential inductive biases required for molecular generation, we propose the O(3) equivariant graph Transformer module, which augments Transformers with graph neural networks (GNNs), using Transformers to update nodes and GNNs to update the coordinates of PROTAC atoms. DiffPROTACs effectively competes with existing models and achieves comparable performance on two traditional FBDD datasets, ZINC and GEOM. To differentiate the molecular characteristics between PROTACs and traditional small molecules, we fine-tuned the model on our self-built PROTACs dataset, achieving a 93.86% validity rate for generated PROTACs. Additionally, we provide a generated PROTAC database for further research, which can be accessed at https://bailab.siais.shanghaitech.edu.cn/service/DiffPROTACs-generated.tgz. The corresponding code is available at https://github.com/Fenglei104/DiffPROTACs and the server is at https://bailab.siais.shanghaitech.edu.cn/services/diffprotacs.
关键词PROTACs linker generation de-novo drug design deep learning PROTAC database
URL查看原文
收录类别SCI
语种英语
资助项目Shanghai Science and Technology Development Funds["22ZR1441400","20QA1406400"] ; National Key R&D Program of China["2022YFC3400501","2022YFC3400500"] ; National Natural Science Foundation of China[82003654]
WOS研究方向Biochemistry & Molecular Biology ; Mathematical & Computational Biology
WOS类目Biochemical Research Methods ; Mathematical & Computational Biology
WOS记录号WOS:001283426600003
出版者OXFORD UNIV PRESS
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/414191
专题免疫化学研究所
信息科学与技术学院
生命科学与技术学院
生命科学与技术学院_硕士生
生命科学与技术学院_博士生
信息科学与技术学院_硕士生
免疫化学研究所_PI研究组_白芳组
通讯作者Bai, Fang
作者单位
1.ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, 393 Middle Huaxia Rd Pudong New Area, Shanghai 201210, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, 393 Middle Huaxia Rd Pudong New Area, Shanghai 201210, Peoples R China
3.East China Normal Univ, Innovat Ctr AI & Drug Discovery, Sch Pharm, 3663 Zhongshan North Rd, Shanghai 200062, Peoples R China
4.ShanghaiTech Univ, Sch Life Sci & Technol, 393 Middle Huaxia Rd Pudong New Area, Shanghai 201210, Peoples R China
5.Shanghai Clin Res & Trial Ctr, 1599 Keyuan Rd Pudong New Area, Shanghai 201210, Peoples R China
第一作者单位免疫化学研究所;  信息科学与技术学院
通讯作者单位免疫化学研究所;  信息科学与技术学院;  生命科学与技术学院
第一作者的第一单位免疫化学研究所
推荐引用方式
GB/T 7714
Li, Fenglei,Hu, Qiaoyu,Zhou, Yongqi,et al. DiffPROTACs is a deep learning-based generator for proteolysis targeting chimeras[J]. BRIEFINGS IN BIOINFORMATICS,2024,25(5).
APA Li, Fenglei,Hu, Qiaoyu,Zhou, Yongqi,Yang, Hao,&Bai, Fang.(2024).DiffPROTACs is a deep learning-based generator for proteolysis targeting chimeras.BRIEFINGS IN BIOINFORMATICS,25(5).
MLA Li, Fenglei,et al."DiffPROTACs is a deep learning-based generator for proteolysis targeting chimeras".BRIEFINGS IN BIOINFORMATICS 25.5(2024).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Fenglei]的文章
[Hu, Qiaoyu]的文章
[Zhou, Yongqi]的文章
百度学术
百度学术中相似的文章
[Li, Fenglei]的文章
[Hu, Qiaoyu]的文章
[Zhou, Yongqi]的文章
必应学术
必应学术中相似的文章
[Li, Fenglei]的文章
[Hu, Qiaoyu]的文章
[Zhou, Yongqi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1093@bib@bbae358.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。