ShanghaiTech University Knowledge Management System
Energy-Efficient Optimal Mode Selection for Edge AI Inference via Integrated Sensing-Communication-Computation | |
2024-12-01 | |
发表期刊 | IEEE TRANSACTIONS ON MOBILE COMPUTING (IF:7.7[JCR-2023],6.5[5-Year]) |
ISSN | 1536-1233 |
EISSN | 1558-0660 |
卷号 | 23期号:12页码:1-15 |
发表状态 | 已发表 |
DOI | 10.1109/TMC.2024.3440581 |
摘要 | Existing edge inference methods only consider one paradigm, i.e., one of on-device inference, on-server inference, or edge-device cooperative inference. Each paradigm has its pros and cons as well as dominant application scopes. For example, the on-device paradigm is the best choice when the inference task is not computationally intensive, the on-server paradigm is suitable if the communication capacity is strong, and the edge-device cooperative mode should be selected in the scenario of weak on-device communication and computation. However, each paradigm suffers from poor performance if deployed outside of its application scope, thus leading to limited potential and flexibility. This paper proposes an edge AI inference framework, which makes the first attempt to jointly consider the three modes for making full use of their benefits. In addition, sensing for data acquisition is enabled at both the edge server and the device. This can effectively improve the inference accuracy with rich information on the target area from two different views. On the other hand, energy cost minimization turns out to be a key target all over the world and a significant issue in wireless networks. To this end, we target minimizing the system energy cost under a given inference accuracy guarantee and other network resource constraints, by coordinating sensing, communication, and computation in different modes. By optimally solving the optimization problem, an integrated sensing-communication-computation (ISCC) based task-oriented mode selection scheme is proposed. A practical ISCC platform is built and extensive experiments are conducted to verify our theoretical analysis. |
关键词 | Task analysis Servers Feature extraction Sensors Accuracy Computational modeling Performance evaluation Edge AI inference mode selection integrated sensing-communication-computation task-oriented communications |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | Shanghai Sailing Program[23YF1427400] ; Technology Innovation Special Project of Hubei Province[2023BCB041] ; Wuhan Knowledge Innovation Special Basic Research Project[2022020801010110] ; Research and Application of Low-Carbon Key Technologies for AI-Based Digital Information Infrastructures[2206-420118-89-04-959008] ; National Natural Science Foundation of China[62371313] ; Guangdong Basic and Applied Basic Research Foundation[2022A1515010109] ; Shenzhen-Hong Kong-Macau Technology Research Programme[SGDX20230821091559018] ; Longgang District Special Funds for Science and Technology Innovation[LGKCSDPT2023002] ; National Nature Science Foundation of China[62271318] ; Shanghai Rising-Star Program[22QA1406100] |
WOS研究方向 | Computer Science ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Telecommunications |
WOS记录号 | WOS:001359244600207 |
出版者 | IEEE COMPUTER SOC |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/411252 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_文鼎柱组 |
通讯作者 | Wen, Dingzhu |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China 3.School of Electronic Information, Wuhan University, Wuhan, China 4.Shenzhen Research Institute of Big Data, Shenzhen, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Liu, Shu,Wen, Dingzhu,Li, Da,et al. Energy-Efficient Optimal Mode Selection for Edge AI Inference via Integrated Sensing-Communication-Computation[J]. IEEE TRANSACTIONS ON MOBILE COMPUTING,2024,23(12):1-15. |
APA | Liu, Shu,Wen, Dingzhu,Li, Da,Chen, Qimei,Zhu, Guangxu,&Shi, Yuanming.(2024).Energy-Efficient Optimal Mode Selection for Edge AI Inference via Integrated Sensing-Communication-Computation.IEEE TRANSACTIONS ON MOBILE COMPUTING,23(12),1-15. |
MLA | Liu, Shu,et al."Energy-Efficient Optimal Mode Selection for Edge AI Inference via Integrated Sensing-Communication-Computation".IEEE TRANSACTIONS ON MOBILE COMPUTING 23.12(2024):1-15. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liu, Shu]的文章 |
[Wen, Dingzhu]的文章 |
[Li, Da]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liu, Shu]的文章 |
[Wen, Dingzhu]的文章 |
[Li, Da]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liu, Shu]的文章 |
[Wen, Dingzhu]的文章 |
[Li, Da]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。