ShanghaiTech University Knowledge Management System
A Battery State of Health Prediction Framework Considering User Behavior for On-road Electric Vehicles | |
2024-06-21 | |
会议录名称 | 2024 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC)
![]() |
ISSN | 2377-5483 |
发表状态 | 已发表 |
DOI | 10.1109/ITEC60657.2024.10598855 |
摘要 | This paper proposes a battery state of health (SOH) prediction framework based on a field dataset of 200 on-road electric vehicles collected during June 2022 to June 2023. 21 user charging and driving behavior features are extracted from the field data. A long short term memory (LSTM) neural network is employed to predict the battery SOH. The impacts of the 21 features on the battery SOH degradation are ranked. |
关键词 | Battery management systems Behavioral research Brain Electric vehicles Forecasting Roads and streets Secondary batteries Battery state of health Driving behaviour Field data Health degradation Neural-networks On-road electric vehicle State of health User behaviors |
会议名称 | 2024 IEEE Transportation Electrification Conference and Expo, ITEC 2024 |
会议地点 | Chicago, IL, USA |
会议日期 | 19-21 June 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20243216848648 |
EI主题词 | Long short-term memory |
EI分类号 | 406.2 Roads and Streets ; 461.1 Biomedical Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 702.1.2 Secondary Batteries ; 971 Social Sciences |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/408377 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_杨恒昭组 |
作者单位 | 1.ShanghaiTech University, Shanghai, China 2.Shanghai Electric Vehicle Public Data Collecting, Monitoring, and Research Center, Shanghai, China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Yifei Xu,Yingjie Zhang,Wenjin Yang,et al. A Battery State of Health Prediction Framework Considering User Behavior for On-road Electric Vehicles[C]:Institute of Electrical and Electronics Engineers Inc.,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。