消息
×
loading..
Collecting Larg-Scale Robotic Datasets on a High-Speed Mobile Platform
2024-08-01
会议录名称2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO)
发表状态正式接收
DOIarXiv:2408.00545
摘要

Mobile robotics datasets are essential for research on robotics, for example for research on Simultaneous Localization and Mapping (SLAM). Therefore the ShanghaiTech Mapping Robot was constructed, that features a multitude high-performance sensors and a 16-node cluster to collect all this data. That robot is based on a Clearpath Husky mobile base with a maximum speed of 1 meter per second. This is fine for indoor datasets, but to collect large-scale outdoor datasets a faster platform is needed. This system paper introduces our high-speed mobile platform for data collection. The mapping robot is secured on the rear-steered flatbed car with maximum field of view. Additionally two encoders collect odometry data from two of the car wheels and an external sensor plate houses a downlooking RGB and event camera. With this setup a dataset of more than 10km in the underground parking garage and the outside of our campus was collected and is published with this paper.

会议名称2024 IEEE International Conference on Robotics and Biomimetics, ROBIO 2024
会议地点Bangkok, Thailand
会议日期10-12 Dec. 2024
URL查看原文
收录类别EI
语种英语
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/408349
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_Sören Schwertfeger组
信息科学与技术学院_PI研究组_赵登吉组
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_曹文翰组
通讯作者Schwertfeger, Soeren
作者单位
ShanghaiTech Univ, Key Lab Intelligent Percept & Human Machine Collaborat, Minist Educ, Shanghai, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Lin, Yuxin,Ma, Jiaxuan,Gu, Sizhe,et al. Collecting Larg-Scale Robotic Datasets on a High-Speed Mobile Platform[C],2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lin, Yuxin]的文章
[Ma, Jiaxuan]的文章
[Gu, Sizhe]的文章
百度学术
百度学术中相似的文章
[Lin, Yuxin]的文章
[Ma, Jiaxuan]的文章
[Gu, Sizhe]的文章
必应学术
必应学术中相似的文章
[Lin, Yuxin]的文章
[Ma, Jiaxuan]的文章
[Gu, Sizhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。