MeshSegmenter: Zero-Shot Mesh Semantic Segmentation via Texture Synthesis
2024-07-25
会议录名称EUROPEAN CONFERENCE ON COMPUTER VISION (IF:0.402[JCR-2005],0.000[5-Year])
ISSN0302-9743
卷号15135
发表状态已发表
DOIarXiv:2407.13675
摘要

We present MeshSegmenter, a simple yet effective framework designed for zero-shot 3D semantic segmentation. This model successfully extends the powerful capabilities of 2D segmentation models to 3D meshes, delivering accurate 3D segmentation across diverse meshes and segment descriptions. Specifically, our model leverages the Segment Anything Model (SAM) model to segment the target regions from images rendered from the 3D shape. In light of the importance of the texture for segmentation, we also leverage the pretrained stable diffusion model to generate images with textures from 3D shape, and leverage SAM to segment the target regions from images with textures. Textures supplement the shape for segmentation and facilitate accurate 3D segmentation even in geometrically non-prominent areas, such as segmenting a car door within a car mesh. To achieve the 3D segments, we render 2D images from different views and conduct segmentation for both textured and untextured images. Lastly, we develop a multi-view revoting scheme that integrates 2D segmentation results and confidence scores from various views onto the 3D mesh, ensuring the 3D consistency of segmentation results and eliminating inaccuracies from specific perspectives. Through these innovations, MeshSegmenter offers stable and reliable 3D segmentation results both quantitatively and qualitatively, highlighting its potential as a transformative tool in the field of 3D zero-shot segmentation.

关键词Zero-Shot Learning 3D Semantic Segmentation Texture Synthesis
会议名称18th European Conference on Computer Vision (ECCV)
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点null,Milan,ITALY
会议日期SEP 29-OCT 04, 2024
URL查看原文
收录类别CPCI-S
语种英语
资助项目NSFC[
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号PPRN:90886273
出版者SPRINGER INTERNATIONAL PUBLISHING AG
EISSN1611-3349
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/408322
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_高盛华组
通讯作者Zhong, Ziming
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Shandong Univ, Jinan, Peoples R China
3.Xiaohongshu Inc, Shanghai, Peoples R China
4.Alibaba Grp, Hangzhou, Peoples R China
5.Univ Hong Kong, Hong Kong, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Zhong, Ziming,Xu, Yanxu,Li, Jing,et al. MeshSegmenter: Zero-Shot Mesh Semantic Segmentation via Texture Synthesis[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhong, Ziming]的文章
[Xu, Yanxu]的文章
[Li, Jing]的文章
百度学术
百度学术中相似的文章
[Zhong, Ziming]的文章
[Xu, Yanxu]的文章
[Li, Jing]的文章
必应学术
必应学术中相似的文章
[Zhong, Ziming]的文章
[Xu, Yanxu]的文章
[Li, Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。