ShanghaiTech University Knowledge Management System
MeshSegmenter: Zero-Shot Mesh Semantic Segmentation via Texture Synthesis | |
2024-07-25 | |
会议录名称 | EUROPEAN CONFERENCE ON COMPUTER VISION (IF:0.402[JCR-2005],0.000[5-Year]) |
ISSN | 0302-9743 |
卷号 | 15135 |
发表状态 | 已发表 |
DOI | arXiv:2407.13675 |
摘要 | We present MeshSegmenter, a simple yet effective framework designed for zero-shot 3D semantic segmentation. This model successfully extends the powerful capabilities of 2D segmentation models to 3D meshes, delivering accurate 3D segmentation across diverse meshes and segment descriptions. Specifically, our model leverages the Segment Anything Model (SAM) model to segment the target regions from images rendered from the 3D shape. In light of the importance of the texture for segmentation, we also leverage the pretrained stable diffusion model to generate images with textures from 3D shape, and leverage SAM to segment the target regions from images with textures. Textures supplement the shape for segmentation and facilitate accurate 3D segmentation even in geometrically non-prominent areas, such as segmenting a car door within a car mesh. To achieve the 3D segments, we render 2D images from different views and conduct segmentation for both textured and untextured images. Lastly, we develop a multi-view revoting scheme that integrates 2D segmentation results and confidence scores from various views onto the 3D mesh, ensuring the 3D consistency of segmentation results and eliminating inaccuracies from specific perspectives. Through these innovations, MeshSegmenter offers stable and reliable 3D segmentation results both quantitatively and qualitatively, highlighting its potential as a transformative tool in the field of 3D zero-shot segmentation. |
关键词 | Zero-Shot Learning 3D Semantic Segmentation Texture Synthesis |
会议名称 | 18th European Conference on Computer Vision (ECCV) |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | null,Milan,ITALY |
会议日期 | SEP 29-OCT 04, 2024 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
资助项目 | NSFC[ |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Software Engineering |
WOS记录号 | PPRN:90886273 |
出版者 | SPRINGER INTERNATIONAL PUBLISHING AG |
EISSN | 1611-3349 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/408322 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_高盛华组 |
通讯作者 | Zhong, Ziming |
作者单位 | 1.ShanghaiTech Univ, Shanghai, Peoples R China 2.Shandong Univ, Jinan, Peoples R China 3.Xiaohongshu Inc, Shanghai, Peoples R China 4.Alibaba Grp, Hangzhou, Peoples R China 5.Univ Hong Kong, Hong Kong, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Zhong, Ziming,Xu, Yanxu,Li, Jing,et al. MeshSegmenter: Zero-Shot Mesh Semantic Segmentation via Texture Synthesis[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。