An Adaptive Second-order Method for a Class of Nonconvex Nonsmooth Composite Optimization
2024-07-24
状态已发表
摘要

This paper explores a specific type of nonconvex sparsity-promoting regularization problems, namely those involving â p-norm regularization, in conjunction with a twice continuously differentiable loss function. We propose a novel secondorder algorithm designed to effectively address this class of challenging nonconvex and nonsmooth problems, showcasing several innovative features: (i) The use of an alternating strategy to solve a reweighted â 1 regularized subproblem and the subspace approximate Newton step. (ii) The reweighted â 1 regularized subproblem relies on a convex approximation to the nonconvex regularization term, enabling a closed-form solution characterized by the soft-thresholding operator. This feature allows our method to be applied to various nonconvex regularization problems. (iii) Our algorithm ensures that the iterates maintain their sign values and that nonzero components are kept away from 0 for a sufficient number of iterations, eventually transitioning to a perturbed Newton method. (iv) We provide theoretical guarantees of global convergence, local superlinear convergence in the presence of the Kurdyka- Lojasiewicz (KL) property, and local quadratic convergence when employing the exact Newton step in our algorithm. We also showcase the effectiveness of our approach through experiments on a diverse set of model prediction problems.

关键词nonconvex regularized optimization subspace minimization regularized Newton method iteratively reweighted method
DOIarXiv:2407.17216
相关网址查看原文
出处Arxiv
WOS记录号PPRN:91057383
WOS类目Computer Science, Artificial Intelligence ; Mathematics
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/408317
专题信息科学与技术学院
信息科学与技术学院_PI研究组_王浩组
通讯作者Zhu, Yichen
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Henan Univ, Sch Math & Stat, Kaifeng 475000, Peoples R China
3.Henan Univ, Ctr Appl Math Henan Prov, Zhengzhou 450046, Peoples R China
推荐引用方式
GB/T 7714
Wang, Hao,Yang, Xiangyu,Zhu, Yichen. An Adaptive Second-order Method for a Class of Nonconvex Nonsmooth Composite Optimization. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Hao]的文章
[Yang, Xiangyu]的文章
[Zhu, Yichen]的文章
百度学术
百度学术中相似的文章
[Wang, Hao]的文章
[Yang, Xiangyu]的文章
[Zhu, Yichen]的文章
必应学术
必应学术中相似的文章
[Wang, Hao]的文章
[Yang, Xiangyu]的文章
[Zhu, Yichen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。