ShanghaiTech University Knowledge Management System
Mid-infrared methane standoff sensor using a frequency channel attention based convolutional neural network filter | |
2024-11-15 | |
发表期刊 | SENSORS AND ACTUATORS B: CHEMICAL (IF:8.0[JCR-2023],7.0[5-Year]) |
ISSN | 0925-4005 |
EISSN | 0925-4005 |
卷号 | 419 |
发表状态 | 已发表 |
DOI | 10.1016/j.snb.2024.136371 |
摘要 | Highly sensitive standoff methane detection is vital for atmospheric science, environmental protection, and production safety. We develop a mid-infrared methane standoff sensor using a cooperative target based on tunable diode laser absorption spectroscopy (TDLAS). To enhance sensor sensitivity, we propose a one-dimensional frequency channel attention-based convolutional neural network (1D-FCACNN) filter, which can effectively denoise the methane absorbance signals and its second harmonic signals. The filter model is adequately trained on a simulated spectrum dataset, which we constructed based on data augmentation. In comparison with reported filtering algorithms, the proposed filter shows the best performance in both measuring modes and evaluation metrics. Real-time measurements show that the measuring accuracy and limit of detection (LOD) of the proposed sensor reach a minimum of 30.40 ppb and 5.04 ppb over a 10-meter optical range, a significant improvement compared to previous reports of methane standoff sensors. The proposed methane standoff sensor proves the feasibility of enhancing the performance of TDLAS gas sensors with the attention mechanism, bringing a new option for high-sensitivity measurements of methane and other atmospheric trace gases. © 2024 Elsevier B.V. |
关键词 | Absorption spectroscopy Convolution Convolutional neural networks Gas detectors Gases Infrared devices Semiconductor lasers Convolutional neural network Frequency channel attention Frequency channels High sensitivity High sensitivity and stability Methane standoff sensor One-dimensional One-dimensional convolutional neural network Standoff sensors Tunable diode laser absorption spectroscopy |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
资助项目 | Key Basic Research Projects of the Basic Strengthening Pro-gram[D040107] ; null[2021-173ZD-025] |
WOS研究方向 | Chemistry ; Electrochemistry ; Instruments & Instrumentation |
WOS类目 | Chemistry, Analytical ; Electrochemistry ; Instruments & Instrumentation |
WOS记录号 | WOS:001286258800001 |
出版者 | Elsevier B.V. |
EI入藏号 | 20243116796419 |
EI主题词 | Methane |
EI分类号 | 716.1 Information Theory and Signal Processing ; 744.4.1 Semiconductor Lasers ; 804.1 Organic Compounds ; 914.1 Accidents and Accident Prevention ; 943.3 Special Purpose Instruments |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/407204 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 |
通讯作者 | Li, Chunlai |
作者单位 | 1.Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai; 200083, China; 2.University of Chinese Academy of Sciences, Beijing; 100049, China; 3.Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou; 310024, China; 4.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China |
推荐引用方式 GB/T 7714 | Wang, Senyuan,Liu, Shijie,He, Xin,et al. Mid-infrared methane standoff sensor using a frequency channel attention based convolutional neural network filter[J]. SENSORS AND ACTUATORS B: CHEMICAL,2024,419. |
APA | Wang, Senyuan.,Liu, Shijie.,He, Xin.,Tang, Guoliang.,Zhu, Shouzheng.,...&Wang, Jianyu.(2024).Mid-infrared methane standoff sensor using a frequency channel attention based convolutional neural network filter.SENSORS AND ACTUATORS B: CHEMICAL,419. |
MLA | Wang, Senyuan,et al."Mid-infrared methane standoff sensor using a frequency channel attention based convolutional neural network filter".SENSORS AND ACTUATORS B: CHEMICAL 419(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。