Mid-infrared methane standoff sensor using a frequency channel attention based convolutional neural network filter
2024-11-15
发表期刊SENSORS AND ACTUATORS B: CHEMICAL (IF:8.0[JCR-2023],7.0[5-Year])
ISSN0925-4005
EISSN0925-4005
卷号419
发表状态已发表
DOI10.1016/j.snb.2024.136371
摘要

Highly sensitive standoff methane detection is vital for atmospheric science, environmental protection, and production safety. We develop a mid-infrared methane standoff sensor using a cooperative target based on tunable diode laser absorption spectroscopy (TDLAS). To enhance sensor sensitivity, we propose a one-dimensional frequency channel attention-based convolutional neural network (1D-FCACNN) filter, which can effectively denoise the methane absorbance signals and its second harmonic signals. The filter model is adequately trained on a simulated spectrum dataset, which we constructed based on data augmentation. In comparison with reported filtering algorithms, the proposed filter shows the best performance in both measuring modes and evaluation metrics. Real-time measurements show that the measuring accuracy and limit of detection (LOD) of the proposed sensor reach a minimum of 30.40 ppb and 5.04 ppb over a 10-meter optical range, a significant improvement compared to previous reports of methane standoff sensors. The proposed methane standoff sensor proves the feasibility of enhancing the performance of TDLAS gas sensors with the attention mechanism, bringing a new option for high-sensitivity measurements of methane and other atmospheric trace gases. © 2024 Elsevier B.V.

关键词Absorption spectroscopy Convolution Convolutional neural networks Gas detectors Gases Infrared devices Semiconductor lasers Convolutional neural network Frequency channel attention Frequency channels High sensitivity High sensitivity and stability Methane standoff sensor One-dimensional One-dimensional convolutional neural network Standoff sensors Tunable diode laser absorption spectroscopy
URL查看原文
收录类别EI ; SCI
语种英语
资助项目Key Basic Research Projects of the Basic Strengthening Pro-gram[D040107] ; null[2021-173ZD-025]
WOS研究方向Chemistry ; Electrochemistry ; Instruments & Instrumentation
WOS类目Chemistry, Analytical ; Electrochemistry ; Instruments & Instrumentation
WOS记录号WOS:001286258800001
出版者Elsevier B.V.
EI入藏号20243116796419
EI主题词Methane
EI分类号716.1 Information Theory and Signal Processing ; 744.4.1 Semiconductor Lasers ; 804.1 Organic Compounds ; 914.1 Accidents and Accident Prevention ; 943.3 Special Purpose Instruments
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/407204
专题信息科学与技术学院
信息科学与技术学院_硕士生
通讯作者Li, Chunlai
作者单位
1.Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai; 200083, China;
2.University of Chinese Academy of Sciences, Beijing; 100049, China;
3.Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou; 310024, China;
4.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China
推荐引用方式
GB/T 7714
Wang, Senyuan,Liu, Shijie,He, Xin,et al. Mid-infrared methane standoff sensor using a frequency channel attention based convolutional neural network filter[J]. SENSORS AND ACTUATORS B: CHEMICAL,2024,419.
APA Wang, Senyuan.,Liu, Shijie.,He, Xin.,Tang, Guoliang.,Zhu, Shouzheng.,...&Wang, Jianyu.(2024).Mid-infrared methane standoff sensor using a frequency channel attention based convolutional neural network filter.SENSORS AND ACTUATORS B: CHEMICAL,419.
MLA Wang, Senyuan,et al."Mid-infrared methane standoff sensor using a frequency channel attention based convolutional neural network filter".SENSORS AND ACTUATORS B: CHEMICAL 419(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Senyuan]的文章
[Liu, Shijie]的文章
[He, Xin]的文章
百度学术
百度学术中相似的文章
[Wang, Senyuan]的文章
[Liu, Shijie]的文章
[He, Xin]的文章
必应学术
必应学术中相似的文章
[Wang, Senyuan]的文章
[Liu, Shijie]的文章
[He, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。