AI-driven high-throughput droplet screening of cell-free gene expression
2025-03-19
发表期刊NATURE COMMUNICATIONS (IF:14.7[JCR-2023],16.1[5-Year])
ISSN2041-1723
发表状态已发表
DOI10.1038/s41467-025-58139-0
摘要

Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems.

关键词high-throughput screening droplet microfluidics cell-free gene expression artificial intelligence synthetic biology
URL查看原文
语种英语
WOS类目Engineering, Multidisciplinary
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/404288
专题物质科学与技术学院
物质科学与技术学院_PI研究组_凌盛杰组
物质科学与技术学院_PI研究组_李健组
物质科学与技术学院_硕士生
物质科学与技术学院_博士生
物质科学与技术学院_PI研究组_刘一凡组
共同第一作者Meng, Yaru; Gao, Wenli
通讯作者Ling, Shengjie; Li, Jian; Liu, Yifan
作者单位
1.School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
2.State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
3.State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
4.Shanghai Clinical Research and Trial Center, Shanghai, China.
5.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, China.
第一作者单位物质科学与技术学院
通讯作者单位物质科学与技术学院;  上海科技大学
第一作者的第一单位物质科学与技术学院
推荐引用方式
GB/T 7714
Zhu, Jiawei,Meng, Yaru,Gao, Wenli,et al. AI-driven high-throughput droplet screening of cell-free gene expression[J]. NATURE COMMUNICATIONS,2025.
APA Zhu, Jiawei.,Meng, Yaru.,Gao, Wenli.,Yang, Shuo.,Zhu, Wenjie.,...&Liu, Yifan.(2025).AI-driven high-throughput droplet screening of cell-free gene expression.NATURE COMMUNICATIONS.
MLA Zhu, Jiawei,et al."AI-driven high-throughput droplet screening of cell-free gene expression".NATURE COMMUNICATIONS (2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhu, Jiawei]的文章
[Meng, Yaru]的文章
[Gao, Wenli]的文章
百度学术
百度学术中相似的文章
[Zhu, Jiawei]的文章
[Meng, Yaru]的文章
[Gao, Wenli]的文章
必应学术
必应学术中相似的文章
[Zhu, Jiawei]的文章
[Meng, Yaru]的文章
[Gao, Wenli]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。