ShanghaiTech University Knowledge Management System
RAW Images-Based Motion-Assisted Object Detection Accelerator Using Deformable Parts Models Features on 1080p Videos | |
2024 | |
发表期刊 | IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS (IF:5.2[JCR-2023],4.5[5-Year]) |
ISSN | 1558-0806 |
EISSN | 1558-0806 |
卷号 | PP期号:99页码:5054-5066 |
发表状态 | 已发表 |
DOI | 10.1109/TCSI.2024.3425751 |
摘要 | This paper introduces an end-to-end object detection hardware accelerator that directly processes RAW video signals to generate detection results, enabling a holistic approach to optimization. Unlike existing works that primarily concentrate on the back-end object detector, we explore the redundancy present across multiple stages of the processing pipeline such as the image signal processing (ISP), the temporal correlation in consecutive frames and the back-end detector. A prototype of Deformable Parts Models (DPM)-based accelerator has been successfully validated on the Altera TR5 field-programmable gate array (FPGA) platform. This accelerator demonstrates efficient processing of high-resolution ( $1920\times1080$ ) videos at 60 frames per second (FPS) while incorporating a 12-scale gradient pyramid and consuming only 130.9 KB blocks of memory. To optimize the search process for motion estimation, we adopt the time division multiplexing (TDM) technology, which effectively reduces both multiplexer usage and memory access. Compared to conventional methods that scan a 1080p frame, the proposed head-based motion search hardware consumes 6.82% of the processing cycles and utilizes merely 6.9 KB of block memory. Evaluation and comparison results demonstrate the effectiveness of the proposed system. |
关键词 | Object detection Videos Motion estimation Feature extraction Task analysis Pipelines Detectors redundancy image signal processing (ISP) RAW videos deformable part-based models (DPM) non-key frame detection motion estimation |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | Shanghai Youth Science and Technology Talents Sailing Project[23YF1427300] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Electrical & Electronic |
WOS记录号 | WOS:001272996400001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20244517316718 |
EI主题词 | Motion estimation |
EI分类号 | 1103.4 ; 1106.3.1 ; 1301.2.1.1 ; 709 Electrical Engineering, General ; 716.1 Information Theory and Signal Processing |
原始文献类型 | Journal article (JA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/404253 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_娄鑫组 信息科学与技术学院_博士生 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Ling Zhang,Haoyan Li,Xiangyu Zhang,et al. RAW Images-Based Motion-Assisted Object Detection Accelerator Using Deformable Parts Models Features on 1080p Videos[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS,2024,PP(99):5054-5066. |
APA | Ling Zhang,Haoyan Li,Xiangyu Zhang,&Xin Lou.(2024).RAW Images-Based Motion-Assisted Object Detection Accelerator Using Deformable Parts Models Features on 1080p Videos.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS,PP(99),5054-5066. |
MLA | Ling Zhang,et al."RAW Images-Based Motion-Assisted Object Detection Accelerator Using Deformable Parts Models Features on 1080p Videos".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS PP.99(2024):5054-5066. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。