RAW Images-Based Motion-Assisted Object Detection Accelerator Using Deformable Parts Models Features on 1080p Videos
2024
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS (IF:5.2[JCR-2023],4.5[5-Year])
ISSN1558-0806
EISSN1558-0806
卷号PP期号:99页码:5054-5066
发表状态已发表
DOI10.1109/TCSI.2024.3425751
摘要

This paper introduces an end-to-end object detection hardware accelerator that directly processes RAW video signals to generate detection results, enabling a holistic approach to optimization. Unlike existing works that primarily concentrate on the back-end object detector, we explore the redundancy present across multiple stages of the processing pipeline such as the image signal processing (ISP), the temporal correlation in consecutive frames and the back-end detector. A prototype of Deformable Parts Models (DPM)-based accelerator has been successfully validated on the Altera TR5 field-programmable gate array (FPGA) platform. This accelerator demonstrates efficient processing of high-resolution ( $1920\times1080$ ) videos at 60 frames per second (FPS) while incorporating a 12-scale gradient pyramid and consuming only 130.9 KB blocks of memory. To optimize the search process for motion estimation, we adopt the time division multiplexing (TDM) technology, which effectively reduces both multiplexer usage and memory access. Compared to conventional methods that scan a 1080p frame, the proposed head-based motion search hardware consumes 6.82% of the processing cycles and utilizes merely 6.9 KB of block memory. Evaluation and comparison results demonstrate the effectiveness of the proposed system.

关键词Object detection Videos Motion estimation Feature extraction Task analysis Pipelines Detectors redundancy image signal processing (ISP) RAW videos deformable part-based models (DPM) non-key frame detection motion estimation
URL查看原文
收录类别SCI ; EI
语种英语
资助项目Shanghai Youth Science and Technology Talents Sailing Project[23YF1427300]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:001272996400001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20244517316718
EI主题词Motion estimation
EI分类号1103.4 ; 1106.3.1 ; 1301.2.1.1 ; 709 Electrical Engineering, General ; 716.1 Information Theory and Signal Processing
原始文献类型Journal article (JA)
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/404253
专题信息科学与技术学院
信息科学与技术学院_PI研究组_娄鑫组
信息科学与技术学院_博士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Ling Zhang,Haoyan Li,Xiangyu Zhang,et al. RAW Images-Based Motion-Assisted Object Detection Accelerator Using Deformable Parts Models Features on 1080p Videos[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS,2024,PP(99):5054-5066.
APA Ling Zhang,Haoyan Li,Xiangyu Zhang,&Xin Lou.(2024).RAW Images-Based Motion-Assisted Object Detection Accelerator Using Deformable Parts Models Features on 1080p Videos.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS,PP(99),5054-5066.
MLA Ling Zhang,et al."RAW Images-Based Motion-Assisted Object Detection Accelerator Using Deformable Parts Models Features on 1080p Videos".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS PP.99(2024):5054-5066.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ling Zhang]的文章
[Haoyan Li]的文章
[Xiangyu Zhang]的文章
百度学术
百度学术中相似的文章
[Ling Zhang]的文章
[Haoyan Li]的文章
[Xiangyu Zhang]的文章
必应学术
必应学术中相似的文章
[Ling Zhang]的文章
[Haoyan Li]的文章
[Xiangyu Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。