Feature Map Guided Adapter Network for Object Detection in Low-light Conditions
2024-05-22
会议录名称2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)
ISSN0271-4302
发表状态已发表
DOI10.1109/ISCAS58744.2024.10557901
摘要

Conventional ISP pipelines and image enhancement methods are designed and optimized for human vision, creating a gap between the requirements of computer and human visions. To bridge the requirement gap, we present a co-design framework in which backend computer vision plays a pivotal role in shaping the proceeding image processing algorithm. It features a pre- processing adapter network, responsible for the restoration and enhancement of RAW images from computer vision perspective, especially in challenging environmental conditions. Specifically, we extract feature maps from the backend vision network, utilizing them as constraints for optimizing the preprocessing adapter network. To validate the effectiveness of our proposed framework, we employ object detection in low-light conditions as the computer vision task, with YOLO-v5 as the backbone. Given the considerable noise in low-light images, we compare our results with state-of-the-art denoising algorithms, showcasing the superior performance of our framework.

会议录编者/会议主办者Agency for Science, Technology and Research, Institute of Microelectronics (IME) ; Cadence ; Continental ; et al. ; National University of Singapore, Department of Electrical and Computer Engineering, College of Design and Engineering ; Synopsys
关键词Bridges Image enhancement Object detection Object recognition Co-designs Design frameworks Feature map Human vision Image processing algorithm Images processing Low light conditions Objects detection Perceptual loss Raw images
会议名称2024 IEEE International Symposium on Circuits and Systems, ISCAS 2024
会议地点Singapore, Singapore
会议日期19-22 May 2024
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20242916713908
EI主题词Computer vision
EI分类号401.1 Bridges ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 741.2 Vision
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/398624
专题信息科学与技术学院
信息科学与技术学院_PI研究组_娄鑫组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University
2.Key Laboratory of Intelligent Perception and Human-Machine Collaboration, Ministry of Education Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Cong Pang,Wei Zhou,Haoyan Li,et al. Feature Map Guided Adapter Network for Object Detection in Low-light Conditions[C]//Agency for Science, Technology and Research, Institute of Microelectronics (IME), Cadence, Continental, et al., National University of Singapore, Department of Electrical and Computer Engineering, College of Design and Engineering, Synopsys:Institute of Electrical and Electronics Engineers Inc.,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cong Pang]的文章
[Wei Zhou]的文章
[Haoyan Li]的文章
百度学术
百度学术中相似的文章
[Cong Pang]的文章
[Wei Zhou]的文章
[Haoyan Li]的文章
必应学术
必应学术中相似的文章
[Cong Pang]的文章
[Wei Zhou]的文章
[Haoyan Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。