ShanghaiTech University Knowledge Management System
Feature Map Guided Adapter Network for Object Detection in Low-light Conditions | |
2024-05-22 | |
会议录名称 | 2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)
![]() |
ISSN | 0271-4302 |
发表状态 | 已发表 |
DOI | 10.1109/ISCAS58744.2024.10557901 |
摘要 | Conventional ISP pipelines and image enhancement methods are designed and optimized for human vision, creating a gap between the requirements of computer and human visions. To bridge the requirement gap, we present a co-design framework in which backend computer vision plays a pivotal role in shaping the proceeding image processing algorithm. It features a pre- processing adapter network, responsible for the restoration and enhancement of RAW images from computer vision perspective, especially in challenging environmental conditions. Specifically, we extract feature maps from the backend vision network, utilizing them as constraints for optimizing the preprocessing adapter network. To validate the effectiveness of our proposed framework, we employ object detection in low-light conditions as the computer vision task, with YOLO-v5 as the backbone. Given the considerable noise in low-light images, we compare our results with state-of-the-art denoising algorithms, showcasing the superior performance of our framework. |
会议录编者/会议主办者 | Agency for Science, Technology and Research, Institute of Microelectronics (IME) ; Cadence ; Continental ; et al. ; National University of Singapore, Department of Electrical and Computer Engineering, College of Design and Engineering ; Synopsys |
关键词 | Bridges Image enhancement Object detection Object recognition Co-designs Design frameworks Feature map Human vision Image processing algorithm Images processing Low light conditions Objects detection Perceptual loss Raw images |
会议名称 | 2024 IEEE International Symposium on Circuits and Systems, ISCAS 2024 |
会议地点 | Singapore, Singapore |
会议日期 | 19-22 May 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20242916713908 |
EI主题词 | Computer vision |
EI分类号 | 401.1 Bridges ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 741.2 Vision |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/398624 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_娄鑫组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University 2.Key Laboratory of Intelligent Perception and Human-Machine Collaboration, Ministry of Education Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Cong Pang,Wei Zhou,Haoyan Li,et al. Feature Map Guided Adapter Network for Object Detection in Low-light Conditions[C]//Agency for Science, Technology and Research, Institute of Microelectronics (IME), Cadence, Continental, et al., National University of Singapore, Department of Electrical and Computer Engineering, College of Design and Engineering, Synopsys:Institute of Electrical and Electronics Engineers Inc.,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Cong Pang]的文章 |
[Wei Zhou]的文章 |
[Haoyan Li]的文章 |
百度学术 |
百度学术中相似的文章 |
[Cong Pang]的文章 |
[Wei Zhou]的文章 |
[Haoyan Li]的文章 |
必应学术 |
必应学术中相似的文章 |
[Cong Pang]的文章 |
[Wei Zhou]的文章 |
[Haoyan Li]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。