A Microwatt/Channel Neural Signal Processor for High-Channel-Count Spike Detection and Sorting
2024-05-22
会议录名称2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)
ISSN0271-4302
发表状态已发表
DOI10.1109/ISCAS58744.2024.10558215
摘要

Next generation of brain-computer interface (BCI) aspires to achieve accurate and real-time spike sorting while being power--efficient. To achieve on-chip high-channel-count neural signal processing, accurate and hardware-efficient algorithms are critical. This work proposes a spike-sorting system that includes a NEO spike detector with an automatic threshold trainer, spike alignment and a feature extractor based on the first-and-second-derivative (FSDE) algorithm. The system employs a time-interleaving structure to reuse the logic cells, thus reducing the area and leakage power. The proposed system is implemented in ASIC in both 65 nm and 180 nm CMOS technologies with different folding ratios, and the product of power and area is optimized when a DSP core interleaves 8 channels. The implemented design in a 65-nm technology occupies 2.69 × 10-3 mm2/channel and consumes 0.52μW/channel at a 1.2-V supply. The accuracy simulations show that the proposed NEO (δ= 1) and FSDE algorithms achieve the average spike-detection accuracy of 97.1% and clustering accuracy of 91.6%, respectively.

会议录编者/会议主办者Agency for Science, Technology and Research, Institute of Microelectronics (IME) ; Cadence ; Continental ; et al. ; National University of Singapore, Department of Electrical and Computer Engineering, College of Design and Engineering ; Synopsys
关键词Brain computer interface Clustering algorithms Computer circuits Logic devices Brain-computer interface Features extraction High channel counts Low Power Microwatts Neural signal processing Neural signals Second derivatives Spike detection Spike-sorting
会议名称2024 IEEE International Symposium on Circuits and Systems, ISCAS 2024
会议地点Singapore, Singapore
会议日期19-22 May 2024
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20242916713805
EI主题词Feature extraction
EI分类号721.2 Logic Elements ; 721.3 Computer Circuits ; 722.2 Computer Peripheral Equipment ; 903.1 Information Sources and Analysis
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/398621
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_吕宏鸣组
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
3.University of Chinese Academy of Sciences, Beijing, China
4.Shanghai Engineering Research Center of Energy Efficient and Custon AI IC, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zichen Hu,Zhining Zhou,Hongming Lyu. A Microwatt/Channel Neural Signal Processor for High-Channel-Count Spike Detection and Sorting[C]//Agency for Science, Technology and Research, Institute of Microelectronics (IME), Cadence, Continental, et al., National University of Singapore, Department of Electrical and Computer Engineering, College of Design and Engineering, Synopsys:Institute of Electrical and Electronics Engineers Inc.,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zichen Hu]的文章
[Zhining Zhou]的文章
[Hongming Lyu]的文章
百度学术
百度学术中相似的文章
[Zichen Hu]的文章
[Zhining Zhou]的文章
[Hongming Lyu]的文章
必应学术
必应学术中相似的文章
[Zichen Hu]的文章
[Zhining Zhou]的文章
[Hongming Lyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。