ShanghaiTech University Knowledge Management System
A Microwatt/Channel Neural Signal Processor for High-Channel-Count Spike Detection and Sorting | |
2024-05-22 | |
会议录名称 | 2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)
![]() |
ISSN | 0271-4302 |
发表状态 | 已发表 |
DOI | 10.1109/ISCAS58744.2024.10558215 |
摘要 | Next generation of brain-computer interface (BCI) aspires to achieve accurate and real-time spike sorting while being power--efficient. To achieve on-chip high-channel-count neural signal processing, accurate and hardware-efficient algorithms are critical. This work proposes a spike-sorting system that includes a NEO spike detector with an automatic threshold trainer, spike alignment and a feature extractor based on the first-and-second-derivative (FSDE) algorithm. The system employs a time-interleaving structure to reuse the logic cells, thus reducing the area and leakage power. The proposed system is implemented in ASIC in both 65 nm and 180 nm CMOS technologies with different folding ratios, and the product of power and area is optimized when a DSP core interleaves 8 channels. The implemented design in a 65-nm technology occupies 2.69 × 10-3 mm2/channel and consumes 0.52μW/channel at a 1.2-V supply. The accuracy simulations show that the proposed NEO (δ= 1) and FSDE algorithms achieve the average spike-detection accuracy of 97.1% and clustering accuracy of 91.6%, respectively. |
会议录编者/会议主办者 | Agency for Science, Technology and Research, Institute of Microelectronics (IME) ; Cadence ; Continental ; et al. ; National University of Singapore, Department of Electrical and Computer Engineering, College of Design and Engineering ; Synopsys |
关键词 | Brain computer interface Clustering algorithms Computer circuits Logic devices Brain-computer interface Features extraction High channel counts Low Power Microwatts Neural signal processing Neural signals Second derivatives Spike detection Spike-sorting |
会议名称 | 2024 IEEE International Symposium on Circuits and Systems, ISCAS 2024 |
会议地点 | Singapore, Singapore |
会议日期 | 19-22 May 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20242916713805 |
EI主题词 | Feature extraction |
EI分类号 | 721.2 Logic Elements ; 721.3 Computer Circuits ; 722.2 Computer Peripheral Equipment ; 903.1 Information Sources and Analysis |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/398621 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_吕宏鸣组 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China 3.University of Chinese Academy of Sciences, Beijing, China 4.Shanghai Engineering Research Center of Energy Efficient and Custon AI IC, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zichen Hu,Zhining Zhou,Hongming Lyu. A Microwatt/Channel Neural Signal Processor for High-Channel-Count Spike Detection and Sorting[C]//Agency for Science, Technology and Research, Institute of Microelectronics (IME), Cadence, Continental, et al., National University of Singapore, Department of Electrical and Computer Engineering, College of Design and Engineering, Synopsys:Institute of Electrical and Electronics Engineers Inc.,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。