Density Estimation-based Effective Sampling Strategy for Neural Rendering
2024-05-22
会议录名称2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)
ISSN0271-4302
发表状态已发表
DOI10.1109/ISCAS58744.2024.10558691
摘要

Expanding upon the foundational Neural Radiance Fields (NeRF) framework, neural rendering techniques have seen wide-ranging applications in 3D reconstruction and rendering. Despite the numerous attempts to accelerate the original NeRF, the ray marching process in many neural rendering algorithms remains a performance bottleneck, constraining their rendering speed. In this work, we introduce an innovative method for effective sampling based on density estimation to alleviate this bottleneck. The proposed method can effectively reduce the number of required occupancy grid access without compromising rendering quality. Evaluation and analysis results validate the effectiveness of the proposed approach, delivering notable improvements in rendering efficiency.

会议录编者/会议主办者Agency for Science, Technology and Research, Institute of Microelectronics (IME) ; Cadence ; Continental ; et al. ; National University of Singapore, Department of Electrical and Computer Engineering, College of Design and Engineering ; Synopsys
关键词Computer vision Statistics 3-D rendering 3D reconstruction Density estimation Kernel density estimation Neural radiance field Neural rendering Ray-marching Sampling strategies Wide-ranging applications
会议名称2024 IEEE International Symposium on Circuits and Systems, ISCAS 2024
会议地点Singapore, Singapore
会议日期19-22 May 2024
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20242916714435
EI主题词Three dimensional computer graphics
EI分类号723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 741.2 Vision ; 922.2 Mathematical Statistics
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/398616
专题信息科学与技术学院
信息科学与技术学院_PI研究组_娄鑫组
信息科学与技术学院_本科生
作者单位
1.School of Information Science and Technology, ShanghaiTech University
2.Key Laboratory of Intelligent Perception Human-Machine Collaboration, Ministry of Education, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Yunxiang He,Xin Lou. Density Estimation-based Effective Sampling Strategy for Neural Rendering[C]//Agency for Science, Technology and Research, Institute of Microelectronics (IME), Cadence, Continental, et al., National University of Singapore, Department of Electrical and Computer Engineering, College of Design and Engineering, Synopsys:Institute of Electrical and Electronics Engineers Inc.,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yunxiang He]的文章
[Xin Lou]的文章
百度学术
百度学术中相似的文章
[Yunxiang He]的文章
[Xin Lou]的文章
必应学术
必应学术中相似的文章
[Yunxiang He]的文章
[Xin Lou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。