| |||||||
ShanghaiTech University Knowledge Management System
RIS-Assisted Multi-Device Edge AI Inference | |
2024-04-24 | |
会议录名称 | 2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC)
![]() |
ISSN | 1525-3511 |
发表状态 | 已发表 |
DOI | 10.1109/WCNC57260.2024.10570611 |
摘要 | In this paper, we propose a multi-device co-inference system based on a task-oriented over-the-air computation (Air-Comp) via reconfigurable intelligent surface (RIS). Specially, local feature vectors extracted from the real-time noisy sensory data on devices are aggregated over-the-air by exploiting the waveform superposition in a multi-user channel. Then the aggregated features received at the server are fed into an inference model for decision making or control of actuators. Based on the proposed multi-device co-inference system, we jointly optimize the receive signal strength of the device, the beamforming vector, and RIS phase shifts to suppress the sensing and channel noise and maximize the inference accuracy. To solve the problem, we first transform the original problem into a convex difference (d.c.) problem, and convert the d.c. problem from the complex domain to the real domain. Then, we propose a successive convex approximation based approach to solve the problem in the real domain. With the supportive data and results from the application of human motion recognition, we show the proposed scheme achieves a higher inference accuracy then the conventional approaches. |
关键词 | Motion estimation Edge AI inference Inference systems Local feature vectors Multi-devices Over the airs Over-the-air computation Real- time Reconfigurable Reconfigurable intelligent surface Task-oriented |
会议名称 | 25th IEEE Wireless Communications and Networking Conference, WCNC 2024 |
会议地点 | Dubai, United Arab Emirates |
会议日期 | 21-24 April 2024 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20242916729172 |
EI主题词 | Decision making |
EI分类号 | 912.2 Management |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/398611 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_毛奕婕组 信息科学与技术学院_PI研究组_文鼎柱组 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Jiayi Yang,Yijie Mao,Dingzhu Wen,et al. RIS-Assisted Multi-Device Edge AI Inference[C]:Institute of Electrical and Electronics Engineers Inc.,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。