Delay Minimization for NOMA-Assisted Federated Learning
2024
会议录名称2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC)
ISSN1525-3511
发表状态已发表
DOI10.1109/WCNC57260.2024.10571051
摘要

Federated learning (FL) enables multiple users to collaboratively train a shared model while protecting user privacy. In this paper, we investigate the transmission delay minimization problem for non-orthogonal multiple access (NOMA)-assisted FL. We analyze the convergence rate of heterogeneous quantized FL to demonstrate that the minimum quantization level among scheduled users is crucial in controlling the trade-off between the number of training rounds and the transmission delay of each round. Based on the convergence analysis, we formulate a delay minimization problem for NOMA-assisted FL and propose a communication-efficient heterogeneous compression NOMA scheme for FL. Subsequently, we develop a block coordinate descent (BCD)-based algorithm that jointly optimizes the sub channel allocation, power allocation, and quan-tization level for each scheduled user. Results reveal that our proposed algorithm significantly reduces the transmission delay while achieving the same learning performance compared with conventional FL algorithms.

会议地点Dubai, United Arab Emirates
会议日期21-24 April 2024
URL查看原文
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/398609
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.School of Information Science and Engineering, Shandong University, Qingdao, Shandong, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Meng Wu,Zheng Dong,Zhibin Wang,et al. Delay Minimization for NOMA-Assisted Federated Learning[C],2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Meng Wu]的文章
[Zheng Dong]的文章
[Zhibin Wang]的文章
百度学术
百度学术中相似的文章
[Meng Wu]的文章
[Zheng Dong]的文章
[Zhibin Wang]的文章
必应学术
必应学术中相似的文章
[Meng Wu]的文章
[Zheng Dong]的文章
[Zhibin Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。