消息
×
loading..
Latency-Aware Microservice Deployment for Edge AI Enabled Video Analytics
2024-04-24
会议录名称2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC)
ISSN1525-3511
发表状态已发表
DOI10.1109/WCNC57260.2024.10571167
摘要

Video analytics plays a pivotal role in public safety (e.g., criminal suspect detection, traffic flow count, and illegal parking management), which assists the polices in monitoring all anomalous events in the street. In this paper, we consider the scenario with multiple video analytics applications from a single video stream. However, traditional monolithic architecture based video analytics applications shall seriously increase the response latency due to the resource contention of repetitive components. Therefore, we utilize the microservice architecture based video analytics (MAVA) to share the universal microser-vices in different applications, which shall decrease the response latency by reducing the computation load and increasing the resource utilization. To further achieve fast and accurate video analytics, the video analytics microservices are deployed in the edge closing to the cameras and users, and artificial intelligence (AI) methods are used in the microservices to realize specified functions. Therefore, an edge AI enabled MAVA (EAI-MAVA) architecture is proposed to achieve accurate video analytics in real-time. Furthermore, we formulate a microservice deployment problem to determine the location of each microservice in EAI-MAVA, which minimizes the response latency of all applications by considering the resource demands of microservices and the resource constraints of heterogeneous edge devices. Finally, a greedy-based heuristic algorithm is proposed to solve the non-convex microservice deployment problem, which obtains a sub-optimal solution with small loss of accuracy and reduces the solution time obviously.

关键词Crime Architecture-based Deployment problems Edge artificial intelligence Heuristics algorithm Latency-aware Microservice architecture Microservice deployment Public safety Traffic flow Video analytics
会议名称25th IEEE Wireless Communications and Networking Conference, WCNC 2024
会议地点Dubai, United Arab Emirates
会议日期21-24 April 2024
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20242916728860
EI主题词Heuristic algorithms
EI分类号723.1 Computer Programming ; 971 Social Sciences
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/398608
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_文鼎柱组
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhanpeng Yang,Zhiyong Yu,Xin Liu,et al. Latency-Aware Microservice Deployment for Edge AI Enabled Video Analytics[C]:Institute of Electrical and Electronics Engineers Inc.,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhanpeng Yang]的文章
[Zhiyong Yu]的文章
[Xin Liu]的文章
百度学术
百度学术中相似的文章
[Zhanpeng Yang]的文章
[Zhiyong Yu]的文章
[Xin Liu]的文章
必应学术
必应学术中相似的文章
[Zhanpeng Yang]的文章
[Zhiyong Yu]的文章
[Xin Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。