Brain topology improved spiking neural network for efficient reinforcement learning of continuous control
2024-04-16
发表期刊FRONTIERS IN NEUROSCIENCE (IF:3.2[JCR-2023],4.3[5-Year])
EISSN1662-453X
卷号18
发表状态已发表
DOI10.3389/fnins.2024.1325062
摘要The brain topology highly reflects the complex cognitive functions of the biological brain after million-years of evolution. Learning from these biological topologies is a smarter and easier way to achieve brain-like intelligence with features of efficiency, robustness, and flexibility. Here we proposed a brain topology-improved spiking neural network (BT-SNN) for efficient reinforcement learning. First, hundreds of biological topologies are generated and selected as subsets of the Allen mouse brain topology with the help of the Tanimoto hierarchical clustering algorithm, which has been widely used in analyzing key features of the brain connectome. Second, a few biological constraints are used to filter out three key topology candidates, including but not limited to the proportion of node functions (e.g., sensation, memory, and motor types) and network sparsity. Third, the network topology is integrated with the hybrid numerical solver-improved leaky-integrated and fire neurons. Fourth, the algorithm is then tuned with an evolutionary algorithm named adaptive random search instead of backpropagation to guide synaptic modifications without affecting raw key features of the topology. Fifth, under the test of four animal-survival-like RL tasks (i.e., dynamic controlling in Mujoco), the BT-SNN can achieve higher scores than not only counterpart SNN using random topology but also some classical ANNs (i.e., long-short-term memory and multi-layer perception). This result indicates that the research effort of incorporating biological topology and evolutionary learning rules has much in store for the future.
关键词spiking neural network brain topology hierarchical clustering reinforcement learning neuromorphic computing
URL查看原文
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of Chinese Academy of Sciences[XDA0370305] ; Beijing Nova Program[20230484369] ; Shanghai Municipal Science and Technology Major Project[2021SHZDZX]
WOS研究方向Neurosciences & Neurology
WOS类目Neurosciences
WOS记录号WOS:001258472700001
出版者FRONTIERS MEDIA SA
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/398583
专题生命科学与技术学院
生命科学与技术学院_特聘教授组_杜久林组
通讯作者Du, Jiulin; Zhang, Tielin; Xu, Bo
作者单位
1.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
3.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, State Key Lab Neurosci, Inst Neurosci, Shanghai, Peoples R China
4.Univ Chinese Acad Sci, Sch Future Technol, Beijing, Peoples R China
5.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China
通讯作者单位生命科学与技术学院
推荐引用方式
GB/T 7714
Wang, Yongjian,Wang, Yansong,Zhang, Xinhe,et al. Brain topology improved spiking neural network for efficient reinforcement learning of continuous control[J]. FRONTIERS IN NEUROSCIENCE,2024,18.
APA Wang, Yongjian,Wang, Yansong,Zhang, Xinhe,Du, Jiulin,Zhang, Tielin,&Xu, Bo.(2024).Brain topology improved spiking neural network for efficient reinforcement learning of continuous control.FRONTIERS IN NEUROSCIENCE,18.
MLA Wang, Yongjian,et al."Brain topology improved spiking neural network for efficient reinforcement learning of continuous control".FRONTIERS IN NEUROSCIENCE 18(2024).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Yongjian]的文章
[Wang, Yansong]的文章
[Zhang, Xinhe]的文章
百度学术
百度学术中相似的文章
[Wang, Yongjian]的文章
[Wang, Yansong]的文章
[Zhang, Xinhe]的文章
必应学术
必应学术中相似的文章
[Wang, Yongjian]的文章
[Wang, Yansong]的文章
[Zhang, Xinhe]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3389@fnins.2024.1325062.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。