消息
×
loading..
DUPLEX: Dual GAT for Complex Embedding of Directed Graphs
2024-06-08
状态已发表
摘要

Current directed graph embedding methods build upon undirected techniques but often inadequately capture directed edge information, leading to challenges such as: (1) Suboptimal representations for nodes with low in/out-degrees, due to the insufficient neighbor interactions; (2) Limited inductive ability for representing new nodes post-training; (3) Narrow generalizability, as training is overly coupled with specific tasks. In response, we propose DUPLEX, an inductive framework for complex embeddings of directed graphs. It (1) leverages Hermitian adjacency matrix decomposition for comprehensive neighbor integration, (2) employs a dual GAT encoder for directional neighbor modeling, and (3) features two parameter-free decoders to decouple training from particular tasks. DUPLEX outperforms state-of-the-art models, especially for nodes with sparse connectivity, and demonstrates robust inductive capability and adaptability across various tasks.

DOIarXiv:2406.05391
相关网址查看原文
出处Arxiv
WOS记录号PPRN:89267603
WOS类目Computer Science, Artificial Intelligence
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/398571
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_张海鹏组
通讯作者Li, Jianguo; Zhang, Haipeng
作者单位
1.Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.Ant Grp, Hangzhou, Peoples R China
推荐引用方式
GB/T 7714
Ke, Zhaoru,Yu, Hang,Li, Jianguo,et al. DUPLEX: Dual GAT for Complex Embedding of Directed Graphs. 2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ke, Zhaoru]的文章
[Yu, Hang]的文章
[Li, Jianguo]的文章
百度学术
百度学术中相似的文章
[Ke, Zhaoru]的文章
[Yu, Hang]的文章
[Li, Jianguo]的文章
必应学术
必应学术中相似的文章
[Ke, Zhaoru]的文章
[Yu, Hang]的文章
[Li, Jianguo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。