RoomDesigner: Encoding Anchor-latents for Style-consistent and Shape-compatible Indoor Scene Generation
2024
会议录名称PROCEEDINGS - 2024 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV 2024
ISSN2378-3826
页码1413-1423
发表状态已发表
DOI10.1109/3DV62453.2024.00132
摘要Indoor scene generation aims at creating shape-compatible, style-consistent furniture arrangements within a spatially reasonable layout. However, most existing approaches primarily focus on generating plausible furniture layouts without incorporating specific details related to individual furniture. To address this limitation, we propose a two-stage model integrating shape priors into the indoor scene generation by encoding furniture as anchor latent representations. In the first stage, we employ discrete vector quantization to encode each piece of furniture as anchor-latents. Based on the anchor-latents representation, the shape and location information of furniture was characterized by a concatenation of location, size, orientation, class, and our anchor latent. In the second stage, we leverage a transformer model to predict indoor scenes configuration autoregressively. Thanks to the proposed anchor-latents representations, our generative model can synthesis furniture in diverse shapes and produce physically plausible arrangements with shape-compatible and style-consistent furniture. Furthermore, our method facilitates various human interaction applications, such as style-consistent scene completion, object mismatch correction, and controllable object-level editing. Experimental results on the 3D-Front dataset demonstrate that our approach can generate more consistent and compatible indoor scenes compared to existing methods, even without shape retrieval. Additionally, extensive ablation studies confirm the effectiveness of our design choices in the indoor scene generation model. © 2024 IEEE.
关键词Computer vision Signal encoding 3d scene generation 3D scenes Discrete vector Encodings Location information Scene generation Shape information Shape priors Two stage model Vector quantisation
会议名称11th International Conference on 3D Vision, 3DV 2024
出版地10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
会议地点Davos, Switzerland
会议日期March 18, 2024 - March 21, 2024
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目NSFC["62172279","61932020"]
WOS研究方向Computer Science ; Engineering ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology
WOS记录号WOS:001250581700119
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20242616355256
EI主题词Encoding (symbols)
EISSN2475-7888
EI分类号716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 741.2 Vision
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/395998
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_高盛华组
信息科学与技术学院_博士生
通讯作者Zhao, Yiqun
作者单位
1.ShanghaiTech University, China
2.Xiaohongshu Inc, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Zhao, Yiqun,Zhao, Zibo,Li, Jing,et al. RoomDesigner: Encoding Anchor-latents for Style-consistent and Shape-compatible Indoor Scene Generation[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:Institute of Electrical and Electronics Engineers Inc.,2024:1413-1423.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhao, Yiqun]的文章
[Zhao, Zibo]的文章
[Li, Jing]的文章
百度学术
百度学术中相似的文章
[Zhao, Yiqun]的文章
[Zhao, Zibo]的文章
[Li, Jing]的文章
必应学术
必应学术中相似的文章
[Zhao, Yiqun]的文章
[Zhao, Zibo]的文章
[Li, Jing]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@3DV62453.2024.00132.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。