ShanghaiTech University Knowledge Management System
Ray Reordering for Hardware-Accelerated Neural Volume Rendering | |
2024 | |
发表期刊 | IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY (IF:8.3[JCR-2023],7.1[5-Year]) |
ISSN | 1558-2205 |
EISSN | 1558-2205 |
卷号 | PP期号:99页码:1-1 |
发表状态 | 已发表 |
DOI | 10.1109/TCSVT.2024.3419761 |
摘要 | Neural Volume Rendering (NVR) has advanced explosively since the advent of Neural Radiance Field (NeRF), a technique for novel view synthesis of complex scenes based on a finite set of input views. Existing ray casting-based NVR approaches process rays concurrently to leverage parallelism but fails to consider its impact on cache locality, which ultimately undermines the efficiency of corresponding dedicated hardware accelerator designs. We further observed that there exhibits spatial correspondence between features and voxels in NVR that can be exploited by processing in the order of voxel, not ray. This paper introduces a novel approach to meticulously reorder the execution of rays, ensuring that rays with similar memory access patterns are processed in parallel, thereby enhancing cache locality. On the basis of that, we also propose an efficient backend architecture and a corresponding memory subsystem, facilitating accurate data prefetching to hide off-chip memory latency. To validate the proposed architecture, we implement our design in VerilogHDL and evaluate the performance by post-synthesis simulation with real scene data. The evaluation results demonstrate that our design markedly enhances the efficiency of NVR processing, achieving a considerable speedup (1.62×) compared to the state-of-the-art NVR accelerator, while necessitating significantly less silicon area (5.12×) and power (32.79×). |
关键词 | Cache memory Efficiency Memory architecture Network architecture Cache locality Hardware Hardware accelerators Hardware-accelerated Image color analysis Neural volume rendering Neural-networks Parallel processing Ray reordering Rendering (computer graphic) |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20242716608891 |
EI主题词 | Volume rendering |
EI分类号 | 722 Computer Systems and Equipment ; 722.1 Data Storage, Equipment and Techniques ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 913.1 Production Engineering |
原始文献类型 | Article in Press |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/395945 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_娄鑫组 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_PI研究组_周平强组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Key Laboratory of Intelligent Perception and Human-Machine Collaboration, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Junran Ding,Yunxiang He,Binzhe Yuan,et al. Ray Reordering for Hardware-Accelerated Neural Volume Rendering[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2024,PP(99):1-1. |
APA | Junran Ding.,Yunxiang He.,Binzhe Yuan.,Zhechen Yuan.,Pingqiang Zhou.,...&Xin Lou.(2024).Ray Reordering for Hardware-Accelerated Neural Volume Rendering.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,PP(99),1-1. |
MLA | Junran Ding,et al."Ray Reordering for Hardware-Accelerated Neural Volume Rendering".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY PP.99(2024):1-1. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。