Ray Reordering for Hardware-Accelerated Neural Volume Rendering
2024
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY (IF:8.3[JCR-2023],7.1[5-Year])
ISSN1558-2205
EISSN1558-2205
卷号PP期号:99页码:1-1
发表状态已发表
DOI10.1109/TCSVT.2024.3419761
摘要

Neural Volume Rendering (NVR) has advanced explosively since the advent of Neural Radiance Field (NeRF), a technique for novel view synthesis of complex scenes based on a finite set of input views. Existing ray casting-based NVR approaches process rays concurrently to leverage parallelism but fails to consider its impact on cache locality, which ultimately undermines the efficiency of corresponding dedicated hardware accelerator designs. We further observed that there exhibits spatial correspondence between features and voxels in NVR that can be exploited by processing in the order of voxel, not ray. This paper introduces a novel approach to meticulously reorder the execution of rays, ensuring that rays with similar memory access patterns are processed in parallel, thereby enhancing cache locality. On the basis of that, we also propose an efficient backend architecture and a corresponding memory subsystem, facilitating accurate data prefetching to hide off-chip memory latency. To validate the proposed architecture, we implement our design in VerilogHDL and evaluate the performance by post-synthesis simulation with real scene data. The evaluation results demonstrate that our design markedly enhances the efficiency of NVR processing, achieving a considerable speedup (1.62×) compared to the state-of-the-art NVR accelerator, while necessitating significantly less silicon area (5.12×) and power (32.79×).

关键词Cache memory Efficiency Memory architecture Network architecture Cache locality Hardware Hardware accelerators Hardware-accelerated Image color analysis Neural volume rendering Neural-networks Parallel processing Ray reordering Rendering (computer graphic)
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20242716608891
EI主题词Volume rendering
EI分类号722 Computer Systems and Equipment ; 722.1 Data Storage, Equipment and Techniques ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 913.1 Production Engineering
原始文献类型Article in Press
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/395945
专题信息科学与技术学院
信息科学与技术学院_PI研究组_娄鑫组
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_PI研究组_周平强组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Key Laboratory of Intelligent Perception and Human-Machine Collaboration, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Junran Ding,Yunxiang He,Binzhe Yuan,et al. Ray Reordering for Hardware-Accelerated Neural Volume Rendering[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2024,PP(99):1-1.
APA Junran Ding.,Yunxiang He.,Binzhe Yuan.,Zhechen Yuan.,Pingqiang Zhou.,...&Xin Lou.(2024).Ray Reordering for Hardware-Accelerated Neural Volume Rendering.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,PP(99),1-1.
MLA Junran Ding,et al."Ray Reordering for Hardware-Accelerated Neural Volume Rendering".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY PP.99(2024):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Junran Ding]的文章
[Yunxiang He]的文章
[Binzhe Yuan]的文章
百度学术
百度学术中相似的文章
[Junran Ding]的文章
[Yunxiang He]的文章
[Binzhe Yuan]的文章
必应学术
必应学术中相似的文章
[Junran Ding]的文章
[Yunxiang He]的文章
[Binzhe Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。