消息
×
loading..
Reliable Source Approximation: Source-Free Unsupervised Domain Adaptation for Vestibular Schwannoma MRI Segmentation
2024-05-25
会议录名称ARXIV (IF:0.402[JCR-2005],0.000[5-Year])
ISSN0302-9743
卷号15010
发表状态已发表
DOIarXiv:2405.16102
摘要

Source -Free Unsupervised Domain Adaptation (SFUDA) has recently become a focus in the medical image domain adaptation, as it only utilizes the source model and does not require annotated target data. However, current SFUDA approaches cannot tackle the complex segmentation task across different MRI sequences, such as the vestibular schwannoma segmentation. To address this problem, we proposed Reliable Source Approximation (RSA), which can generate source -like and structure -preserved images from the target domain for updating model parameters and adapting domain shifts. Specifically, RSA deploys a conditional diffusion model to generate multiple sourcelike images under the guidance of varying edges of one target image. An uncertainty estimation module is then introduced to predict and refine reliable pseudo labels of generated images, and the prediction consistency is developed to select the most reliable generations. Subsequently, all reliable generated images and their pseudo labels are utilized to update the model. Our RSA is validated on vestibular schwannoma segmentation across multi -modality MRI. The experimental results demonstrate that RSA consistently improves domain adaptation performance over other state-of-the-art SFUDA methods. Code is available at https://github.com/zenghy96/Reliable-Source-Approximation.

关键词Source-Free Unsupervised Domain Adaptation Uncertainty estimation Prediction consistency MRI segmentation
会议名称27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点Palmeraie Conf Ctr,Marrakesh,MOROCCO
会议日期OCT 06-10, 2024
URL查看原文
收录类别CPCI-S
语种英语
资助项目Natural Science Foundation of China[12074258]
WOS研究方向Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Software Engineering ; Engineering, Electrical& Electronic
WOS记录号PPRN:89063106
出版者SPRINGER INTERNATIONAL PUBLISHING AG
EISSN1611-3349
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/387332
专题信息科学与技术学院
信息科学与技术学院_PI研究组_郑锐组
信息科学与技术学院_博士生
通讯作者Zeng, Hongye
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.Sichuan Univ, Coll Comp Sci, Natl Key Lab Fundamental Sci Synthet Vis, Chengdu, Peoples R China
3.Tianjin Univ, Coll Intelligence & Comp, Tianjin, Peoples R China
4.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
5.Agcy Sci Technol & Res ASTAR, Inst High Performance Comp IHPC, Singapore 138632, Singapore
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zeng, Hongye,Zou, Ke,Chen, Zhihao,et al. Reliable Source Approximation: Source-Free Unsupervised Domain Adaptation for Vestibular Schwannoma MRI Segmentation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zeng, Hongye]的文章
[Zou, Ke]的文章
[Chen, Zhihao]的文章
百度学术
百度学术中相似的文章
[Zeng, Hongye]的文章
[Zou, Ke]的文章
[Chen, Zhihao]的文章
必应学术
必应学术中相似的文章
[Zeng, Hongye]的文章
[Zou, Ke]的文章
[Chen, Zhihao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。