| |||||||
ShanghaiTech University Knowledge Management System
Reliable Source Approximation: Source-Free Unsupervised Domain Adaptation for Vestibular Schwannoma MRI Segmentation | |
2024-05-25 | |
会议录名称 | ARXIV (IF:0.402[JCR-2005],0.000[5-Year]) |
ISSN | 0302-9743 |
卷号 | 15010 |
发表状态 | 已发表 |
DOI | arXiv:2405.16102 |
摘要 | Source -Free Unsupervised Domain Adaptation (SFUDA) has recently become a focus in the medical image domain adaptation, as it only utilizes the source model and does not require annotated target data. However, current SFUDA approaches cannot tackle the complex segmentation task across different MRI sequences, such as the vestibular schwannoma segmentation. To address this problem, we proposed Reliable Source Approximation (RSA), which can generate source -like and structure -preserved images from the target domain for updating model parameters and adapting domain shifts. Specifically, RSA deploys a conditional diffusion model to generate multiple sourcelike images under the guidance of varying edges of one target image. An uncertainty estimation module is then introduced to predict and refine reliable pseudo labels of generated images, and the prediction consistency is developed to select the most reliable generations. Subsequently, all reliable generated images and their pseudo labels are utilized to update the model. Our RSA is validated on vestibular schwannoma segmentation across multi -modality MRI. The experimental results demonstrate that RSA consistently improves domain adaptation performance over other state-of-the-art SFUDA methods. Code is available at https://github.com/zenghy96/Reliable-Source-Approximation. |
关键词 | Source-Free Unsupervised Domain Adaptation Uncertainty estimation Prediction consistency MRI segmentation |
会议名称 | 27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | Palmeraie Conf Ctr,Marrakesh,MOROCCO |
会议日期 | OCT 06-10, 2024 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
资助项目 | Natural Science Foundation of China[12074258] |
WOS研究方向 | Computer Science ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Software Engineering ; Engineering, Electrical& Electronic |
WOS记录号 | PPRN:89063106 |
出版者 | SPRINGER INTERNATIONAL PUBLISHING AG |
EISSN | 1611-3349 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/387332 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_郑锐组 信息科学与技术学院_博士生 |
通讯作者 | Zeng, Hongye |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.Sichuan Univ, Coll Comp Sci, Natl Key Lab Fundamental Sci Synthet Vis, Chengdu, Peoples R China 3.Tianjin Univ, Coll Intelligence & Comp, Tianjin, Peoples R China 4.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China 5.Agcy Sci Technol & Res ASTAR, Inst High Performance Comp IHPC, Singapore 138632, Singapore |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zeng, Hongye,Zou, Ke,Chen, Zhihao,et al. Reliable Source Approximation: Source-Free Unsupervised Domain Adaptation for Vestibular Schwannoma MRI Segmentation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。