消息
×
loading..
Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL
2024-05-10
会议录名称ARXIV
ISSN2945-9133
卷号14875
发表状态已发表
DOIarXiv:2405.06410
摘要

Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias. Nevertheless, an ongoing controversy exists over the extent to which LLMs can grasp structured semantics. To assess this, we propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics. In our assessment, we employ the prompting approach, which leads to the creation of our few-shot SRL parser, called PromptSRL. PromptSRL enables LLMs to map natural languages to explicit semantic structures, which provides an interpretable window into the properties of LLMs. We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential. Additionally, limitations of LLMs are observed in C-arguments, etc. Lastly, we are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.

关键词Structured semantics Semantic role labeling Large language models
会议名称20th International Conference on Intelligent Computing (ICIC)
出版地152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
会议地点Tianjin Univ Sci & Tech,Tianjin,PEOPLES R CHINA
会议日期AUG 05-08, 2024
URL查看原文
收录类别CPCI-S
语种英语
资助项目Talent Fund of Beijing Jiaotong University[2023XKRC006]
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Interdisciplinary Applications
WOS记录号PPRN:88997681
出版者SPRINGER-VERLAG SINGAPORE PTE LTD
EISSN1611-3349
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/387309
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_屠可伟组
通讯作者Cheng, Ning
作者单位
1.Beijing Jiaotong Univ, Beijing, Peoples R China
2.ShanghaiTech Univ, Shanghai, Peoples R China
3.Tsinghua Univ, Beijing, Peoples R China
4.Univ Oxford, Oxford, England
5.Beijing Inst Gen Artificial Intelligence, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Cheng, Ning,Yan, Zhaohui,Wang, Ziming,et al. Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL[C]. 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE:SPRINGER-VERLAG SINGAPORE PTE LTD,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cheng, Ning]的文章
[Yan, Zhaohui]的文章
[Wang, Ziming]的文章
百度学术
百度学术中相似的文章
[Cheng, Ning]的文章
[Yan, Zhaohui]的文章
[Wang, Ziming]的文章
必应学术
必应学术中相似的文章
[Cheng, Ning]的文章
[Yan, Zhaohui]的文章
[Wang, Ziming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。