| |||||||
ShanghaiTech University Knowledge Management System
Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL | |
2024-05-10 | |
会议录名称 | ARXIV |
ISSN | 2945-9133 |
卷号 | 14875 |
发表状态 | 已发表 |
DOI | arXiv:2405.06410 |
摘要 | Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias. Nevertheless, an ongoing controversy exists over the extent to which LLMs can grasp structured semantics. To assess this, we propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics. In our assessment, we employ the prompting approach, which leads to the creation of our few-shot SRL parser, called PromptSRL. PromptSRL enables LLMs to map natural languages to explicit semantic structures, which provides an interpretable window into the properties of LLMs. We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential. Additionally, limitations of LLMs are observed in C-arguments, etc. Lastly, we are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors. |
关键词 | Structured semantics Semantic role labeling Large language models |
会议名称 | 20th International Conference on Intelligent Computing (ICIC) |
出版地 | 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE |
会议地点 | Tianjin Univ Sci & Tech,Tianjin,PEOPLES R CHINA |
会议日期 | AUG 05-08, 2024 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
资助项目 | Talent Fund of Beijing Jiaotong University[2023XKRC006] |
WOS研究方向 | Computer Science ; Telecommunications |
WOS类目 | Computer Science, Interdisciplinary Applications |
WOS记录号 | PPRN:88997681 |
出版者 | SPRINGER-VERLAG SINGAPORE PTE LTD |
EISSN | 1611-3349 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/387309 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_屠可伟组 |
通讯作者 | Cheng, Ning |
作者单位 | 1.Beijing Jiaotong Univ, Beijing, Peoples R China 2.ShanghaiTech Univ, Shanghai, Peoples R China 3.Tsinghua Univ, Beijing, Peoples R China 4.Univ Oxford, Oxford, England 5.Beijing Inst Gen Artificial Intelligence, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Cheng, Ning,Yan, Zhaohui,Wang, Ziming,et al. Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL[C]. 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE:SPRINGER-VERLAG SINGAPORE PTE LTD,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。