ShanghaiTech University Knowledge Management System
Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spin neuromorphic hardware | |
2024-05-28 | |
发表期刊 | NATURE COMMUNICATIONS |
EISSN | 2041-1723 |
卷号 | 15期号:1 |
发表状态 | 已发表 |
DOI | 10.1038/s41467-024-48631-4 |
摘要 | ["We report a breakthrough in the hardware implementation of energy-efficient all-spin synapse and neuron devices for highly scalable integrated neuromorphic circuits. Our work demonstrates the successful execution of all-spin synapse and activation function generator using domain wall-magnetic tunnel junctions. By harnessing the synergistic effects of spin-orbit torque and interfacial Dzyaloshinskii-Moriya interaction in selectively etched spin-orbit coupling layers, we achieve a programmable multi-state synaptic device with high reliability. Our first-principles calculations confirm that the reduced atomic distance between 5d and 3d atoms enhances Dzyaloshinskii-Moriya interaction, leading to stable domain wall pinning. Our experimental results, supported by visualizing energy landscapes and theoretical simulations, validate the proposed mechanism. Furthermore, we demonstrate a spin-neuron with a sigmoidal activation function, enabling high operation frequency up to 20 MHz and low energy consumption of 508 fJ/operation. A neuron circuit design with a compact sigmoidal cell area and low power consumption is also presented, along with corroborated experimental implementation. Our findings highlight the great potential of domain wall-magnetic tunnel junctions in the development of all-spin neuromorphic computing hardware, offering exciting possibilities for energy-efficient and scalable neural network architectures.","The authors demonstrate all-spin synapses and neurons using domain wall-magnetic tunnel junctions, utilizing synergistic spin-orbit torque and Dzyaloshinskii-Moriya interaction. The intrinsic linearity is required for compact and energy-efficient bio-inspired hardware for neuromorphic computing."] |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China (National Science Foundation of China)[2021YFB3601300] ; National Key Research and Development Program of China[92365113] ; National Natural Science Foundation of China[XDB44010000] |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:001234660500028 |
出版者 | NATURE PORTFOLIO |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/387279 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_杨雨梦组 |
通讯作者 | Wang, Dandan; Xing, Guozhong; Liu, Ming |
作者单位 | 1.Chinese Acad Sci, Inst Microelect, Key Lab Fabricat Technol Integrated Circuits, Beijing 100029, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Hubei Jiufengshan Lab, Wuhan 430206, Hubei, Peoples R China 4.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China 5.South China Normal Univ, Inst Adv Mat, Guangzhou 510006, Peoples R China 6.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 7.Univ Sci & Technol China, Sch Microelect, Hefei 230026, Peoples R China 8.Hefei Univ Technol, Sch Phys, Lab Low Dimens Magnetism & Spintron Devices, Hefei 230009, Anhui, Peoples R China 9.Fudan Univ, Frontier Inst Chip & Syst, Zhangjiang Fudan Int Innovat Ctr, State Key Lab Integrated Chips & Syst, Shanghai 200433, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Long,Wang, Di,Wang, Dandan,et al. Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spin neuromorphic hardware[J]. NATURE COMMUNICATIONS,2024,15(1). |
APA | Liu, Long.,Wang, Di.,Wang, Dandan.,Sun, Yan.,Lin, Huai.,...&Liu, Ming.(2024).Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spin neuromorphic hardware.NATURE COMMUNICATIONS,15(1). |
MLA | Liu, Long,et al."Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spin neuromorphic hardware".NATURE COMMUNICATIONS 15.1(2024). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liu, Long]的文章 |
[Wang, Di]的文章 |
[Wang, Dandan]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liu, Long]的文章 |
[Wang, Di]的文章 |
[Wang, Dandan]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liu, Long]的文章 |
[Wang, Di]的文章 |
[Wang, Dandan]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。