消息
×
loading..
Generic protein-ligand interaction scoring by integrating physical prior knowledge and data augmentation modelling
2024-06-01
发表期刊NATURE MACHINE INTELLIGENCE (IF:18.8[JCR-2023],26.4[5-Year])
ISSN2522-5839
EISSN2522-5839
卷号6期号:6页码:688-700
发表状态已发表
DOI10.1038/s42256-024-00849-z
摘要

["Developing robust methods for evaluating protein-ligand interactions has been a long-standing problem. Data-driven methods may memorize ligand and protein training data rather than learning protein-ligand interactions. Here we show a scoring approach called EquiScore, which utilizes a heterogeneous graph neural network to integrate physical prior knowledge and characterize protein-ligand interactions in equivariant geometric space. EquiScore is trained based on a new dataset constructed with multiple data augmentation strategies and a stringent redundancy-removal scheme. On two large external test sets, EquiScore consistently achieved top-ranking performance compared to 21 other methods. When EquiScore is used alongside different docking methods, it can effectively enhance the screening ability of these docking methods. EquiScore also showed good performance on the activity-ranking task of a series of structural analogues, indicating its potential to guide lead compound optimization. Finally, we investigated different levels of interpretability of EquiScore, which may provide more insights into structure-based drug design.","Machine learning can improve scoring methods to evaluate protein-ligand interactions, but achieving good generalization is an outstanding challenge. Cao et al. introduce EquiScore, which is based on a graph neural network that integrates physical knowledge and is shown to have robust capabilities when applied to unseen protein targets."]

关键词Graph neural networks Lead compounds Proteins Data augmentation Data-driven methods Docking methods Graph neural networks Heterogeneous graph Prior-knowledge Protein-ligand interactions Robust methods Standing problems Training data
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foundation of China[
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:001242205000001
出版者NATURE PORTFOLIO
EI入藏号20242416229935
EI主题词Ligands
EI分类号723.4 Artificial Intelligence ; 801.4 Physical Chemistry ; 804.1 Organic Compounds
原始文献类型Article in Press
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/387249
专题物质科学与技术学院
物质科学与技术学院_本科生
物质科学与技术学院_博士生
通讯作者Zheng, Mingyue
作者单位
1.Zhejiang Univ, Innovat Inst Artificial Intelligence Med, Coll Pharmaceut Sci, Hangzhou, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Mat Med, Drug Discovery & Design Ctr, State Key Lab Drug Res, Shanghai, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.UCAS, Hangzhou Inst Adv Study, Sch Pharmaceut Sci & Technol, Hangzhou, Peoples R China
5.Shanghai Tech Univ, Sch Phys Sci & Technol, Shanghai, Peoples R China
6.Lingang Lab, Shanghai, Peoples R China
7.Univ Sci & Technol China, Div Life Sci & Med, Hefei, Peoples R China
8.Nanjing Univ Chinese Med, Sch Chinese Mat Med, Nanjing, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Cao, Duanhua,Chen, Geng,Jiang, Jiaxin,et al. Generic protein-ligand interaction scoring by integrating physical prior knowledge and data augmentation modelling[J]. NATURE MACHINE INTELLIGENCE,2024,6(6):688-700.
APA Cao, Duanhua.,Chen, Geng.,Jiang, Jiaxin.,Yu, Jie.,Zhang, Runze.,...&Zheng, Mingyue.(2024).Generic protein-ligand interaction scoring by integrating physical prior knowledge and data augmentation modelling.NATURE MACHINE INTELLIGENCE,6(6),688-700.
MLA Cao, Duanhua,et al."Generic protein-ligand interaction scoring by integrating physical prior knowledge and data augmentation modelling".NATURE MACHINE INTELLIGENCE 6.6(2024):688-700.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cao, Duanhua]的文章
[Chen, Geng]的文章
[Jiang, Jiaxin]的文章
百度学术
百度学术中相似的文章
[Cao, Duanhua]的文章
[Chen, Geng]的文章
[Jiang, Jiaxin]的文章
必应学术
必应学术中相似的文章
[Cao, Duanhua]的文章
[Chen, Geng]的文章
[Jiang, Jiaxin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。