| |||||||
ShanghaiTech University Knowledge Management System
Federated Learning with Massive Random Access | |
2024 | |
发表期刊 | IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year]) |
ISSN | 1558-2248 |
EISSN | 1558-2248 |
卷号 | PP期号:99页码:1-1 |
发表状态 | 已发表 |
DOI | 10.1109/TWC.2024.3405451 |
摘要 | In this paper, we propose an online federated learning framework with massive random access, aiming to learn a sequence of global models using local data that are sequentially collected by massive edge devices. As only a subset of devices is capable of collecting data and performing local model update at any specific moment, the communication pattern between the edge server and devices is random and sporadic, which is referred to as sporadic local updates. This motivates us to adopt a two-phase grant-free random access scheme that consists of the activity detection and model transmission phases to facilitate efficient communication between the edge server and devices. We first provide the regret analysis for online federated learning, and derive the optimality gap in terms of successful transmission probabilities. Then, we characterize the achievable transmission rate of each active device using random matrix theory and establish the relationship between the pilot length and the outage probability. Furthermore, we propose an optimal pilot length design by minimizing the optimality gap. To validate our scheme, we provide comprehensive experimental results that demonstrate the superiority of the proposed scheme over traditional schemes in various online tasks. |
关键词 | E-learning Information management Learning systems Random variables Edge server Federated learning Grant-free massive random access Optimisations Performances evaluation Pilot length optimization Random access Resource management Wireless communications |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20242416236257 |
EI主题词 | Wireless sensor networks |
EI分类号 | 716.3 Radio Systems and Equipment ; 722.3 Data Communication, Equipment and Techniques ; 922.1 Probability Theory |
原始文献类型 | Article in Press |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/384329 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_吴幼龙组 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_本科生 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Department of Electrical and Computer Engineering, University of California, Los Angeles, USA 3.Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology (HKUST), Hong Kong, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Shuhao Xia,Yuanming Shi,Yong Zhou,et al. Federated Learning with Massive Random Access[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2024,PP(99):1-1. |
APA | Shuhao Xia,Yuanming Shi,Yong Zhou,Youlong Wu,Lin F. Yang,&Khaled B. Letaief.(2024).Federated Learning with Massive Random Access.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,PP(99),1-1. |
MLA | Shuhao Xia,et al."Federated Learning with Massive Random Access".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS PP.99(2024):1-1. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。