消息
×
loading..
Federated Learning with Massive Random Access
2024
发表期刊IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year])
ISSN1558-2248
EISSN1558-2248
卷号PP期号:99页码:1-1
发表状态已发表
DOI10.1109/TWC.2024.3405451
摘要

In this paper, we propose an online federated learning framework with massive random access, aiming to learn a sequence of global models using local data that are sequentially collected by massive edge devices. As only a subset of devices is capable of collecting data and performing local model update at any specific moment, the communication pattern between the edge server and devices is random and sporadic, which is referred to as sporadic local updates. This motivates us to adopt a two-phase grant-free random access scheme that consists of the activity detection and model transmission phases to facilitate efficient communication between the edge server and devices. We first provide the regret analysis for online federated learning, and derive the optimality gap in terms of successful transmission probabilities. Then, we characterize the achievable transmission rate of each active device using random matrix theory and establish the relationship between the pilot length and the outage probability. Furthermore, we propose an optimal pilot length design by minimizing the optimality gap. To validate our scheme, we provide comprehensive experimental results that demonstrate the superiority of the proposed scheme over traditional schemes in various online tasks.

关键词E-learning Information management Learning systems Random variables Edge server Federated learning Grant-free massive random access Optimisations Performances evaluation Pilot length optimization Random access Resource management Wireless communications
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20242416236257
EI主题词Wireless sensor networks
EI分类号716.3 Radio Systems and Equipment ; 722.3 Data Communication, Equipment and Techniques ; 922.1 Probability Theory
原始文献类型Article in Press
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/384329
专题信息科学与技术学院
信息科学与技术学院_PI研究组_吴幼龙组
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_本科生
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Department of Electrical and Computer Engineering, University of California, Los Angeles, USA
3.Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Shuhao Xia,Yuanming Shi,Yong Zhou,et al. Federated Learning with Massive Random Access[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2024,PP(99):1-1.
APA Shuhao Xia,Yuanming Shi,Yong Zhou,Youlong Wu,Lin F. Yang,&Khaled B. Letaief.(2024).Federated Learning with Massive Random Access.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,PP(99),1-1.
MLA Shuhao Xia,et al."Federated Learning with Massive Random Access".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS PP.99(2024):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shuhao Xia]的文章
[Yuanming Shi]的文章
[Yong Zhou]的文章
百度学术
百度学术中相似的文章
[Shuhao Xia]的文章
[Yuanming Shi]的文章
[Yong Zhou]的文章
必应学术
必应学术中相似的文章
[Shuhao Xia]的文章
[Yuanming Shi]的文章
[Yong Zhou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。