Charge Transfer in Graphene-MoS2 Vertical Heterostructures Tuned by Stacking Order and Substrate-Introduced Electric Field
2024-05-01
发表期刊ACS APPLIED MATERIALS & INTERFACES (IF:8.3[JCR-2023],8.7[5-Year])
ISSN1944-8244
EISSN1944-8252
卷号16期号:23页码:30589-30597
发表状态已发表
DOI10.1021/acsami.4c05511
摘要

Vertical van der Waals heterostructures composed of graphene (Gr) and transition metal dichalcogenides (TMDs) have created a fascinating platform for exploring optical and electronic properties in the two-dimensional limit. Numerous studies have focused on Gr/TMDs heterostructures to elucidate the underlying mechanisms of charge-energy transfer, quasiparticle formation, and relaxation following optical excitation. Nevertheless, a comprehensive understanding of interfacial charge separation and subsequent dynamics in graphene-based heterostructures remains elusive. Here, we have investigated the carrier dynamics of Gr-MoS2 heterostructures (including Gr/MoS2 and MoS2/Gr stacking sequences) grown on a fused silica substrate under varying photoexcitation energies by comprehensive ultrafast means, including time-resolved terahertz (THz) spectroscopy, THz emission spectroscopy, and transient absorption spectroscopy. Our findings highlight the impact of the substrate electric field on the efficiency of modulating the interfacial charge transfer (CT). Specifically, the optical excitation in Gr/MoS2 generates thermal electron injection from the graphene layer into the MoS2 layer with photon energy well below A-exciton of MoS2, whereas the interfacial CT in the MoS2/Gr is blocked by the electric field of the substrate. In turn, photoexcitation of the A exciton above leads to hole transfer from MoS2 to graphene, which occurs for both Gr-MoS2 heterostructures with opposite stacking orders, resulting in the opposite orientations of the interfacial photocurrent, as directly demonstrated by the out-of-phase THz emission. Moreover, we demonstrate that the recombination time of interfacial exciton is approximately similar to 18 ps, whereas the defect-assisted interfacial recombination occurs on a time scale of similar to ns. This study provides valuable insights into the interplay between interfacial CT, substrate effects, and defect engineering in Gr-TMDs heterostructures, thereby facilitating the development of next-generation optoelectronic devices.

关键词graphene TMDs heterostructure chargetransfer substrate electric field
URL查看原文
收录类别SCI ; EI
语种英语
资助项目Natural Science Foundation of Shanghai Municipality[
WOS研究方向Science & Technology - Other Topics ; Materials Science
WOS类目Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号WOS:001236215000001
出版者AMER CHEMICAL SOC
EI入藏号20242316207730
EI主题词Graphene
EI分类号531 Metallurgy and Metallography ; 701.1 Electricity: Basic Concepts and Phenomena ; 712.1 Semiconducting Materials ; 714.2 Semiconductor Devices and Integrated Circuits ; 741.3 Optical Devices and Systems ; 761 Nanotechnology ; 801.4 Physical Chemistry ; 802.2 Chemical Reactions ; 804 Chemical Products Generally ; 812.3 Glass ; 931.1 Mechanics ; 931.3 Atomic and Molecular Physics ; 951 Materials Science
原始文献类型Article in Press
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/384301
专题物质科学与技术学院
物质科学与技术学院_PI研究组_刘伟民组
物质科学与技术学院_博士生
通讯作者Liu, Weimin; Du, Juan; Ma, Guohong
作者单位
1.Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
2.Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Sch Phys & Optoelect Engn, Hangzhou 310024, Peoples R China
3.Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai 201800, Peoples R China
4.Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, CAS Ctr Excellence Ultraintense Laser Sci, Shanghai 201800, Peoples R China
5.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
6.Shanghai Univ, Inst Quantum Sci & Technol, Shanghai 200444, Peoples R China
7.Shandong Normal Univ, Sch Phys & Elect, Jinan 250014, Peoples R China
通讯作者单位物质科学与技术学院
推荐引用方式
GB/T 7714
Zou, Yuqing,Zhang, Zeyu,Wang, Chunwei,et al. Charge Transfer in Graphene-MoS2 Vertical Heterostructures Tuned by Stacking Order and Substrate-Introduced Electric Field[J]. ACS APPLIED MATERIALS & INTERFACES,2024,16(23):30589-30597.
APA Zou, Yuqing.,Zhang, Zeyu.,Wang, Chunwei.,Cheng, Yifan.,Wang, Chen.,...&Ma, Guohong.(2024).Charge Transfer in Graphene-MoS2 Vertical Heterostructures Tuned by Stacking Order and Substrate-Introduced Electric Field.ACS APPLIED MATERIALS & INTERFACES,16(23),30589-30597.
MLA Zou, Yuqing,et al."Charge Transfer in Graphene-MoS2 Vertical Heterostructures Tuned by Stacking Order and Substrate-Introduced Electric Field".ACS APPLIED MATERIALS & INTERFACES 16.23(2024):30589-30597.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zou, Yuqing]的文章
[Zhang, Zeyu]的文章
[Wang, Chunwei]的文章
百度学术
百度学术中相似的文章
[Zou, Yuqing]的文章
[Zhang, Zeyu]的文章
[Wang, Chunwei]的文章
必应学术
必应学术中相似的文章
[Zou, Yuqing]的文章
[Zhang, Zeyu]的文章
[Wang, Chunwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。