| |||||||
ShanghaiTech University Knowledge Management System
A Generative Network with Dual-Domain Discriminators for Low-Dose Stationary Sources CT Imaging | |
2023-11-09 | |
会议录名称 | ACM INTERNATIONAL CONFERENCE PROCEEDING SERIES |
页码 | 98-102 |
发表状态 | 已发表 |
DOI | 10.1145/3637684.3637712 |
摘要 | Recent development of clinical Computed tomography (CT) technologies has led to research for novel CT systems that allow safer and faster imaging, such as low-dose cardiac CT imaging via stationary CT. However, the complex data acquisition schemes in stationary CT often cause severe artifacts and noise in the resulted images; this calls for the development of a new kind of image reconstruction algorithms. Recent advancements in deep learning have shown remarkable progress in medical image reconstruction, processing, and analysis. In this paper, we propose a generative network with dual-domain discriminators for low-dose CT reconstruction in a stationary CT system. The image-domain discriminator optimizes the generation network by comparing the generated CT images with the reference images, while the sinogram-domain discriminator preserves the structure of the sinograms and suppresses the noise. The network incorporates uncertainty to automatically adjust the weights of a multi-term loss function, eliminating the need for the manual tuning of hyperparameters in the loss function. The results from our numerical experiments demonstrate the effectiveness of our proposed reconstruction algorithm for low-dose imaging in stationary CT. © 2023 ACM. |
关键词 | Clinical research Computerized tomography Data acquisition Deep learning Discriminators Medical imaging Deep learning Dose computed tomographies Dual domain Images reconstruction Loss functions Low dose Low-dose computed tomography Stationary sources Tomography imaging Tomography system |
会议名称 | 6th International Conference on Digital Medicine and Image Processing, DMIP 2023 |
会议地点 | Kyoto, Japan |
会议日期 | November 9, 2023 - November 12, 2023 |
收录类别 | EI |
语种 | 英语 |
出版者 | Association for Computing Machinery |
EI入藏号 | 20242016085924 |
EI主题词 | Image reconstruction |
EI分类号 | 461.1 Biomedical Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 713.3 Modulators, Demodulators, Limiters, Discriminators, Mixers ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 746 Imaging Techniques |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/381452 |
专题 | 生物医学工程学院 物质科学与技术学院_博士生 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_曹国华组 |
通讯作者 | Cao, Guohua |
作者单位 | School of Biomedical Engineering, ShanghaiTech University, Shanghai, China |
第一作者单位 | 生物医学工程学院 |
通讯作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Bai, Xiao,Cheng, Ying,Chen, Linjie,et al. A Generative Network with Dual-Domain Discriminators for Low-Dose Stationary Sources CT Imaging[C]:Association for Computing Machinery,2023:98-102. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。