消息
×
loading..
A Generative Network with Dual-Domain Discriminators for Low-Dose Stationary Sources CT Imaging
2023-11-09
会议录名称ACM INTERNATIONAL CONFERENCE PROCEEDING SERIES
页码98-102
发表状态已发表
DOI10.1145/3637684.3637712
摘要

Recent development of clinical Computed tomography (CT) technologies has led to research for novel CT systems that allow safer and faster imaging, such as low-dose cardiac CT imaging via stationary CT. However, the complex data acquisition schemes in stationary CT often cause severe artifacts and noise in the resulted images; this calls for the development of a new kind of image reconstruction algorithms. Recent advancements in deep learning have shown remarkable progress in medical image reconstruction, processing, and analysis. In this paper, we propose a generative network with dual-domain discriminators for low-dose CT reconstruction in a stationary CT system. The image-domain discriminator optimizes the generation network by comparing the generated CT images with the reference images, while the sinogram-domain discriminator preserves the structure of the sinograms and suppresses the noise. The network incorporates uncertainty to automatically adjust the weights of a multi-term loss function, eliminating the need for the manual tuning of hyperparameters in the loss function. The results from our numerical experiments demonstrate the effectiveness of our proposed reconstruction algorithm for low-dose imaging in stationary CT. © 2023 ACM.

关键词Clinical research Computerized tomography Data acquisition Deep learning Discriminators Medical imaging Deep learning Dose computed tomographies Dual domain Images reconstruction Loss functions Low dose Low-dose computed tomography Stationary sources Tomography imaging Tomography system
会议名称6th International Conference on Digital Medicine and Image Processing, DMIP 2023
会议地点Kyoto, Japan
会议日期November 9, 2023 - November 12, 2023
收录类别EI
语种英语
出版者Association for Computing Machinery
EI入藏号20242016085924
EI主题词Image reconstruction
EI分类号461.1 Biomedical Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 713.3 Modulators, Demodulators, Limiters, Discriminators, Mixers ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 746 Imaging Techniques
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/381452
专题生物医学工程学院
物质科学与技术学院_博士生
信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_曹国华组
通讯作者Cao, Guohua
作者单位
School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
第一作者单位生物医学工程学院
通讯作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Bai, Xiao,Cheng, Ying,Chen, Linjie,et al. A Generative Network with Dual-Domain Discriminators for Low-Dose Stationary Sources CT Imaging[C]:Association for Computing Machinery,2023:98-102.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Bai, Xiao]的文章
[Cheng, Ying]的文章
[Chen, Linjie]的文章
百度学术
百度学术中相似的文章
[Bai, Xiao]的文章
[Cheng, Ying]的文章
[Chen, Linjie]的文章
必应学术
必应学术中相似的文章
[Bai, Xiao]的文章
[Cheng, Ying]的文章
[Chen, Linjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。